【題目】如圖點(diǎn)是半徑為的砂輪邊緣上的一個(gè)質(zhì)點(diǎn),它從初始位置,)開(kāi)始,按逆時(shí)針?lè)较蛎?/span>旋轉(zhuǎn)一周,

1)求點(diǎn)的縱坐標(biāo)關(guān)于時(shí)間的函數(shù)關(guān)系;

2)求點(diǎn)的運(yùn)動(dòng)周期和頻率;

3)函數(shù)的圖像可由余弦曲線(xiàn)經(jīng)過(guò)怎樣的變化得到?

【答案】1,;(2)運(yùn)動(dòng)周期和頻率;(3)答案見(jiàn)解析.

【解析】

1)由的坐標(biāo)求出,再由周期求出即可求得解析式;(2)由點(diǎn)P旋轉(zhuǎn)一周可求得周期與頻率;(3)根據(jù)三角函數(shù)圖象變換規(guī)則由余弦函數(shù)通過(guò)相位變換及周期變換得到函數(shù),,再保留y軸右側(cè)圖象即可.

1)由的坐標(biāo)可知,則

,∴

,

2)因?yàn)辄c(diǎn)P旋轉(zhuǎn)一周,所以點(diǎn)的運(yùn)動(dòng)周期和頻率;

3)函數(shù)的圖象向右平移個(gè)單位得到函數(shù),

的圖象向右平移個(gè)單位長(zhǎng)度得到函數(shù),

的圖象的橫坐標(biāo)縮短為原來(lái)的倍,縱坐標(biāo)不變得到函數(shù)

,

的圖象y軸左側(cè)的部分抹去得到函數(shù),.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)分別為,離心率為,直線(xiàn)

與橢圓的兩個(gè)交點(diǎn)間的距離為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)如圖,過(guò),作兩條平行線(xiàn),與橢圓的上半部分分別交于,兩點(diǎn),求四邊形

面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為菱形, 平面, , , , 分別是, 的中點(diǎn).

(1)證明: ;

(2)設(shè)為線(xiàn)段上的動(dòng)點(diǎn),若線(xiàn)段長(zhǎng)的最小值為,求二面角的余弦值.

【答案】(1)見(jiàn)解析;(2)

【解析】試題分析:(1)證明線(xiàn)線(xiàn)垂直則需證明線(xiàn)面垂直,根據(jù)題意易得,然后根據(jù)等邊三角形的性質(zhì)可得,,因此平面,從而得證(2)先找到EH什么時(shí)候最短,顯然當(dāng)線(xiàn)段長(zhǎng)的最小時(shí), ,在中, , ,∴,由中, ,∴.然后建立空間直角坐標(biāo)系,寫(xiě)出兩個(gè)面法向量再根據(jù)向量的夾角公式即可得余弦值

解析:(1)證明:∵四邊形為菱形, ,

為正三角形.又的中點(diǎn),∴.

,因此.

平面 平面,∴.

平面, 平面,

平面.又平面,∴.

(2)如圖, 上任意一點(diǎn),連接, .

當(dāng)線(xiàn)段長(zhǎng)的最小時(shí), ,由(1)知

平面, 平面,故.

中, , ,

中, , ,∴.

由(1)知 , 兩兩垂直,以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,又 分別是, 的中點(diǎn),

可得, , ,

, , ,

所以, .

設(shè)平面的一法向量為,

因此,

,則,

因?yàn)?/span>, , ,所以平面,

為平面的一法向量.又,

所以 .

易得二面角為銳角,故所求二面角的余弦值為.

型】解答
結(jié)束】
20

【題目】2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考已知橢圓 的左頂點(diǎn)為,上頂點(diǎn)為,直線(xiàn)與直線(xiàn)垂直,垂足為點(diǎn),且點(diǎn)是線(xiàn)段的中點(diǎn).

I)求橢圓的方程;

II)如圖,若直線(xiàn) 與橢圓交于, 兩點(diǎn),點(diǎn)在橢圓上,且四邊形為平行四邊形,求證:四邊形的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】市場(chǎng)份額又稱(chēng)市場(chǎng)占有率,它在很大程度上反映了企業(yè)的競(jìng)爭(zhēng)地位和盈利能力,是企業(yè)非常重視的一個(gè)指標(biāo).近年來(lái),服務(wù)機(jī)器人與工業(yè)機(jī)器人以迅猛的增速占領(lǐng)了中國(guó)機(jī)器人領(lǐng)域龐大的市場(chǎng)份額,隨著“一帶一路”的積極推動(dòng),包括機(jī)器人產(chǎn)業(yè)在內(nèi)的眾多行業(yè)得到了更廣闊的的發(fā)展空間,某市場(chǎng)研究人員為了了解某機(jī)器人制造企業(yè)的經(jīng)營(yíng)狀況,對(duì)該機(jī)器人制造企業(yè)2017年1月至6月的市場(chǎng)份額進(jìn)行了調(diào)查,得到如下資料:

月份

1

2

3

4

5

6

市場(chǎng)份額

11

163

16

15

20

21

請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線(xiàn)性回歸方程,并預(yù)測(cè)該企業(yè)2017年7月份的市場(chǎng)份額.

如圖是該機(jī)器人制造企業(yè)記錄的2017年6月1日至6月30日之間的產(chǎn)品銷(xiāo)售頻數(shù)(單位:天)統(tǒng)計(jì)圖.設(shè)銷(xiāo)售產(chǎn)品數(shù)量為,經(jīng)統(tǒng)計(jì),當(dāng)時(shí),企業(yè)每天虧損約為200萬(wàn)元;

當(dāng)時(shí),企業(yè)平均每天收入約為400萬(wàn)元;

當(dāng)時(shí),企業(yè)平均每天收入約為700萬(wàn)元.

①設(shè)該企業(yè)在六月份每天收入為,求的數(shù)學(xué)期望;

②如果將頻率視為概率,求該企業(yè)在未來(lái)連續(xù)三天總收入不低于1200萬(wàn)元的概率.

附:回歸直線(xiàn)的方程是,其中

, ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在固定壓力差(壓力差為常數(shù))下,當(dāng)氣體通過(guò)圓形管道時(shí),其流量速率,(單位:)與管道半徑r(單位:cm)的四次方成正比.

1)寫(xiě)出氣體流量速率,關(guān)于管道半徑r的函數(shù)解析式;

2)若氣體在半徑為3cm的管道中,流量速率為,求該氣體通過(guò)半徑為r的管道時(shí),其流量速率v的表達(dá)式;

3)已知(2)中的氣體通過(guò)的管道半徑為5cm,計(jì)算該氣體的流量速率(精確到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是邊長(zhǎng)為2的菱形,底面.

1)求證:平面

2)若,直線(xiàn)與平面所成的角為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,點(diǎn)P是直線(xiàn)上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作圓M的切線(xiàn)PA,PB,切點(diǎn)為A,B

1)當(dāng)切線(xiàn)PA的長(zhǎng)度為時(shí),求點(diǎn)P的坐標(biāo);

2)若的外接圓為圓N,試問(wèn):當(dāng)P運(yùn)動(dòng)時(shí),圓N是否過(guò)定點(diǎn)?若存在,求出所有的定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

3)求線(xiàn)段AB長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)某鎮(zhèn)家庭抽樣調(diào)查的統(tǒng)計(jì),2003年每戶(hù)家庭平均消費(fèi)支出總額為1萬(wàn)元,其中食品消費(fèi)額為0.6萬(wàn)元.預(yù)測(cè)2003年后,每戶(hù)家庭平均消費(fèi)支出總額每年增加3000元,如果到2005年該鎮(zhèn)居民生活狀況能達(dá)到小康水平(即恩格爾系數(shù)n滿(mǎn)足),則這個(gè)鎮(zhèn)每戶(hù)食品消費(fèi)額平均每年的增長(zhǎng)率至多是多少(精確到0.1%)?

查看答案和解析>>

同步練習(xí)冊(cè)答案