如圖16所示,設計一個四棱錐形冷水塔塔頂,四棱錐的底面是正方形,側面是全等的等腰三角形,已知底面邊長為2 cm,高是cm,制造這個塔頂需要多少鐵板?

圖16

分析:轉化為求這個四棱錐的側面積.利用過四棱錐不相鄰的兩側棱作截面,依此來求側面等腰三角形的面積.

解:如圖17所示,連接AC和BD交于O,連接SO,則有SO⊥OA,

圖17

所以在△SOA中,SO=cm,OA=×2=cm,則有SA==3 cm,

則△SAB的面積是×2×2=2cm2.

所以四棱錐的側面積是4×2=8cm2.

答:制造這個塔頂需要8cm2鐵板.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)某造紙廠擬建一座平面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價為400元/米,中間兩道隔墻建造單價為248元/米,池底建造單價為80
元/米2,水池所有墻的厚度忽略不計.
(1)試設計污水處理池的長和寬,使總造價最低,并求出最低總造價;
(2)若由于地形限制,該池的長和寬都不能超過16米,試設計污水池的長和寬,使總造價最低,并求出最低總造價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某造紙廠擬建一座平面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價為400元/米,中間兩道隔墻建造單價為248元/米,池底建造單價為80元/米2,水池所有墻的厚度忽略不計.

(1)試設計污水處理池的長和寬,使總造價最低,并求出最低總造價;

(2)若由于地形限制,該池的長和寬都不能超過16米,試設計污水池的長和寬,使總造價最低,并求出最低總造價.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年山東省菏澤市鄄城一中高考數(shù)學三模試卷(文科)(解析版) 題型:解答題

某造紙廠擬建一座平面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價為400元/米,中間兩道隔墻建造單價為248元/米,池底建造單價為80
元/米2,水池所有墻的厚度忽略不計.
(1)試設計污水處理池的長和寬,使總造價最低,并求出最低總造價;
(2)若由于地形限制,該池的長和寬都不能超過16米,試設計污水池的長和寬,使總造價最低,并求出最低總造價.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省煙臺市高三年級期末考試文科數(shù)學 題型:解答題

(本小題滿分12分)

某造紙廠擬建一座平面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價為400元/米,中間兩道隔墻建造單價為248元/米,池底建造單價為80元/米2,水池所有墻的厚度忽略不計.

(1)試設計污水處理池的長和寬,使總造價最低,并求出最低總造價;

(2)若由于地形限制,該池的長和寬都不能超過16米,試設計污水池的長和寬,使總造價最低.

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆福建省泉州市高三上學期期中文科數(shù)學試卷 題型:解答題

某造紙廠擬建一座平面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價為400元/米,中間兩道隔墻建造單價為248元/米,池底建造單價為80元/米2,水池所有墻的厚度忽略不計.

(1)試設計污水處理池的長和寬,使總造價最低,并求出最低總造價;

(2)若由于地形限制,該池的長和寬都不能超過16米,試設計污水池的長和寬,使總造價最低.

 

 

 

 

查看答案和解析>>

同步練習冊答案