【題目】為培養(yǎng)學(xué)生的閱讀習(xí)慣,某校開展了為期一年的“弘揚傳統(tǒng)文化,閱讀經(jīng)典名著”活動. 活動后,為了解閱讀情況,學(xué)校統(tǒng)計了甲、乙兩組各10名學(xué)生的閱讀量(單位:本),統(tǒng)計結(jié)果用莖葉圖記錄如下,乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中以a表示.

(Ⅰ)若甲組閱讀量的平均值大于乙組閱讀量的平均值,求圖中a的所有可能取值;

(Ⅱ)將甲、乙兩組中閱讀量超過15本的學(xué)生稱為“閱讀達人”. 設(shè),現(xiàn)從所有的“閱讀達人”里任取2人,求至少有1人來自甲組的概率;

(Ⅲ)記甲組閱讀量的方差為. 若在甲組中增加一個閱讀量為10的學(xué)生,并記新得到的甲組閱讀量的方差為,試比較,的大小.(結(jié)論不要求證明)

(注:,其中為數(shù)據(jù)的平均數(shù))

【答案】(Ⅰ) . (Ⅱ) (Ⅲ)

【解析】

(Ⅰ)分別求出甲組10名學(xué)生閱讀量的平均值和乙組10名學(xué)生閱讀量的平均值,由此能求出圖中a的取值.

(Ⅱ)記事件“從所有的“閱讀達人”里任取2人,至少有1人來自甲組”為M.甲組“閱讀達人”有2人,在此分別記為A1,A2;乙組“閱讀達人”有3人,在此分別記為B1,B2,B3.從所有的“閱讀達人”里任取2人,利用列舉法能求出從所有的‘閱讀達人’里任取2人,至少有1人來自甲組的概率.

(Ⅲ)由莖葉圖直接得

(Ⅰ)甲組10名學(xué)生閱讀量的平均值為,

乙組10名學(xué)生閱讀量的平均值為.

由題意,得,即.

故圖中a的取值為.

(Ⅱ)記事件“從所有的“閱讀達人”里任取2人,至少有1人來自甲組”為M.

由圖可知,甲組“閱讀達人”有2人,在此分別記為,;乙組“閱讀達人”有3人,在此分別記為,.

則從所有的“閱讀達人”里任取2人,所有可能結(jié)果有10種, 即,,,,,,.

而事件M的結(jié)果有7種,它們是,,,,,

所以.

即從所有的‘閱讀達人’里任取2人,至少有1人來自甲組的概率為.

(Ⅲ)由莖葉圖直接觀察可得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項和為,且滿足,數(shù)列中,,對任意正整數(shù),.

1)求數(shù)列的通項公式;

2)是否存在實數(shù),使得數(shù)列是等比數(shù)列?若存在,請求出實數(shù)及公比q的值,若不存在,請說明理由;

3)求數(shù)列n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市教育局衛(wèi)生健康所對全市高三年級的學(xué)生身高進行抽樣調(diào)查,隨機抽取了100名學(xué)生,他們身高都處于五個層次,根據(jù)抽樣結(jié)果得到如下統(tǒng)計圖表,則從圖表中不能得出的信息是( )

A. 樣本中男生人數(shù)少于女生人數(shù)

B. 樣本中層次身高人數(shù)最多

C. 樣本中層次身高的男生多于女生

D. 樣本中層次身高的女生有3人

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,直線不經(jīng)過橢圓上頂點,與橢圓交于,不同兩點.

1)當(dāng),時,求橢圓的離心率的取值范圍;

2)若,直線的斜率之和為,證明:直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生會為了解高二年級600名學(xué)生課余時間參加中華傳統(tǒng)文化活動的情況(每名學(xué)生最多參加7).隨機抽取50名學(xué)生進行調(diào)查,將數(shù)據(jù)分組整理后,列表如下:

則以下四個結(jié)論中正確的是( )

A.表中的數(shù)值為10

B.估計該年級參加中華傳統(tǒng)文化活動場數(shù)不高于2場的學(xué)生約為108

C.估計該年級參加中華傳統(tǒng)文化活動場數(shù)不低于4場的學(xué)生約為216

D.若采用系統(tǒng)抽樣方法進行調(diào)查,從該校高二600名學(xué)生中抽取容量為30的樣本,則分段間隔為15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前n項和為,對一切,點都在函數(shù)的圖像上.

(1)證明:當(dāng)時,;

(2)求數(shù)列的通項公式;

(3)設(shè)為數(shù)列的前n項的積,若不等式對一切成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知位于軸左側(cè)的圓軸相切于點且被軸分成的兩段圓弧長之比為,直線與圓相交于,兩點,且以為直徑的圓恰好經(jīng)過坐標(biāo)原點.

1)求圓的方程;

2)求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的離心率,左、右焦點分別為,過右焦點任作一條不垂直于坐標(biāo)軸的直線l與橢圓C交于A,B兩點,的周長為.

1)求橢圓C的方程;

2)記點B關(guān)于x軸的對稱點為點,直線x軸于點D.的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上一點到其焦點下的距離為10.

(1)求拋物線C的方程;

(2)設(shè)過焦點F的的直線與拋物線C交于兩點,且拋物線在兩點處的切線分別交x軸于兩點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案