【題目】設(shè)函數(shù)為常數(shù)) .
(1)當(dāng)時(shí),求曲線在處的切線方程:
(2)若函數(shù)在內(nèi)存在唯一極值點(diǎn),求實(shí)數(shù)的取值范圍,并判斷,是在內(nèi)的極大值點(diǎn)還是極小值點(diǎn).
【答案】(1) (2) ,為函數(shù)的極小值點(diǎn)
【解析】
(1)求出,,即可求出切線方程;
(2)轉(zhuǎn)化為在有唯一解,分離參數(shù),構(gòu)造新函數(shù),再轉(zhuǎn)為直線與構(gòu)造函數(shù)的交點(diǎn),通過求導(dǎo)研究所構(gòu)造函數(shù)的性質(zhì),即可求解.
解: (1)當(dāng)時(shí),,
所求切線的斜率,又.
所以曲線在處的切線方程為.
(2)
又,則要使得在內(nèi)存在唯一極值點(diǎn),
則在存在唯一零點(diǎn),
即方程在內(nèi)存在唯一解,,
,即與在范圍內(nèi)有唯一交點(diǎn).
設(shè)函數(shù),
則在單調(diào)遞減,
又;當(dāng)時(shí),,
時(shí)與在范圍內(nèi)有唯一交點(diǎn),設(shè)為
當(dāng)時(shí),,
則,在為減函數(shù):
當(dāng)時(shí),,
則,在為增函數(shù).
即為函數(shù)的極小值點(diǎn).
綜上所述:,且為函數(shù)的極小值點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱的底面是邊長(zhǎng)為的正三角形,側(cè)棱底面為中點(diǎn),分別為上的點(diǎn),且滿足.
(1)求證:平面平面, ;
(2)若三棱錐的體積為,求三棱柱的側(cè)棱長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),是的導(dǎo)函數(shù),且.
(1)求的值,并證明在處取得極值;
(2)證明:在區(qū)間有唯一零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義[x]表示不超過x的最大整數(shù),,例如:.執(zhí)行如圖所示的程序框圖若輸入的,則輸出結(jié)果為( )
A.-4.6B.-2.8C.-1.4D.-2.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>且滿足,當(dāng)時(shí),.
(1)判斷在上的單調(diào)性并加以證明;
(2)若方程有實(shí)數(shù)根,則稱為函數(shù)的一個(gè)不動(dòng)點(diǎn),設(shè)正數(shù)為函數(shù)的一個(gè)不動(dòng)點(diǎn),且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.
(1)若的面積,求a+c值;
(2)若2cosC(+)=c2,求角C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com