20.已知△ABC的一個(gè)頂點(diǎn)A(2,1),∠ABC的外角平分線是x=0,∠ACB的內(nèi)角平分線是y=3x,求直線BC的方程.

分析 只需求出A點(diǎn)關(guān)于直線y=3x和直線x=0的對(duì)稱點(diǎn),從而求出所求直線的方程即可.

解答 解:A點(diǎn)關(guān)于x=0,y=3x的對(duì)稱點(diǎn)均在直線BC上,
設(shè)A(2,1)關(guān)于直線y=3x的對(duì)稱點(diǎn)A2(m,n),
∴$\left\{\begin{array}{l}{\frac{n-1}{m-2}=-\frac{1}{3}}\\{\frac{n+1}{2}=3•\frac{m+2}{2}}\end{array}\right.$,解得A2(-1,2),
A(2,1)關(guān)于x=0對(duì)稱點(diǎn)A1(-2,1),
∴直線A1A2的方程是:$\frac{y-1}{2-1}$=$\frac{x+2}{-1+2}$,
∴BC的方程是:x-y+3=0.

點(diǎn)評(píng) 本題考查了求直線的方程問題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若m<n,p<q且(p-m)(p-n)<0,(q-m)(q-n)<0,則m,n,p,q從小到大排列順序是( 。
A.p<m<n<qB.m<p<q<nC.p<q<m<nD.m<n<p<q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列命題中正確的有( 。﹤(gè).
①若兩條直線和第三條直線所成的角相等,則這兩條直線互相平行.
②空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ).
③四面體的四個(gè)面中,最多有四個(gè)直角三角形.
④若兩個(gè)平面垂直,則一個(gè)平面內(nèi)的已知直線必垂直于另一個(gè)平面的無數(shù)條直線.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知f(1+x)=x2+2x-1,則f(x)=x2-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)函數(shù)f(x)是R上的偶函數(shù),且當(dāng)x>0時(shí),函數(shù)的解析式為f(x)=$\frac{2}{x}$-1.求當(dāng)x<0時(shí),函數(shù)的解析式.
(2)若f(x)滿足關(guān)系式$f(x)+2f(\frac{1}{x})=3x$,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知兩條直線 l1:x+(1+m)y=2-m,l2:mx+2y=16.l1∥l2,則m=( 。
A.1或-2B.1C.-2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如果實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y+1≤0}\\{x-y+1≥0}\\{y≥-1}\end{array}\right.$,那么目標(biāo)函數(shù)z=2x-y的最小值為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=2x-2-x,定義域?yàn)镽;函數(shù)g(x)=2x+1-22x,定義域?yàn)閇-1,1].
(Ⅰ)判斷函數(shù)f(x)的單調(diào)性(不必證明)并證明其奇偶性;
(Ⅱ)若方程g(x)=t有解,求實(shí)數(shù)t的取值范圍;
(Ⅲ) 若不等式f(g(x))+f(3am-m2-1)≤0對(duì)一切x∈[-1,1],a∈[-2,2]恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-\frac{1}{x-1},x<0}\\{(x-1)^{2},x≥0}\end{array}\right.$,若直線y=m與函數(shù)f(x)的圖象有三個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍(0,1).

查看答案和解析>>

同步練習(xí)冊(cè)答案