命題p:|x-1|<1,命題q:x2-(2a+4)x+a(a+4)<0.若?p是?q的必要不充分條件,求實(shí)數(shù)a的取值范圍.
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:先求出p,q的范圍,再根據(jù)?p是?q的必要不充分條件,從而得到答案.
解答: 解:p:0<x<2,q:a<x<a+4,
由?p是?q的必要不充分條件
即q是p的必要不充分條件,
得a≤0且2≤a+4,
∴-2≤a≤0.
點(diǎn)評:本題考查了充分必要條件,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)是定義域為R的偶函數(shù),且在區(qū)間[0,4]上單調(diào)遞減,則有(  )
A、f(-π)>f(-1)>f(
π
3
B、f(
π
3
)>f(-1)>f(-π)
C、f(-1)>f(
π
3
)>f(-π)
D、f(-1)>f(-π)>f(
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知cos2α=-
47
49
,cos(α-β)=
13
14
,且0<β<α<
π
2
,求β;
(2)已知sin(2α-β)=
3
5
,sinβ=-
12
13
,且α∈(
π
2
,π),β∈(-
π
2
,0),求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

運(yùn)貨卡車計劃從A地運(yùn)輸貨物到距A地1300千米外的B地,卡車的速度為x千米/小時(50≤x≤100).假設(shè)柴油的價格是每升6元,而汽車每小時耗油(6+
x2
360
)
升,司機(jī)的工資是每小時24元,不考慮卡車保養(yǎng)等其它費(fèi)用.
(1)求這次行車總費(fèi)用y關(guān)于x的表達(dá)式;(行車總費(fèi)用=油費(fèi)+司機(jī)工資)
(2)當(dāng)x為何值時,這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論正確的是( 。
A、若向量
a
b
,則存在唯一的實(shí)數(shù)λ使 
a
b
B、已知向量
a
,
b
為非零向量,則“
a
,
b
的夾角為鈍角”的充要條件是“
a
b
<0
C、若命題 p:?x∈R,x2-x+1<0,則?p:?x∈R,x2-x+1>0
D、“若 θ=
π
3
,則 cosθ=
1
2
”的否命題為“若 θ≠
π
3
,則 cosθ≠
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC,點(diǎn)A(2,8)、B(-4,0)、C(6,0),則∠ABC的平分線所在直線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,cosA=
10
10
,cosB=
5
5

(1)求cos(A+B)的值;
(2)若b=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知-
π
4
≤x≤
π
3
,y=tan2x-2tanx+2.求函數(shù)的最大值和最小值,并求出相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|1≤x≤3},B={x|x>2}.
(1)分別求A∩B,(∁RB)∪A;
(2)已知集合C={x|1<x<a},若C∩A=C≠∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案