19.定義函數(shù)序列:${f_1}(x)=f(x)=\frac{x}{1-x}$,f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn-1(x)),則函數(shù)y=f2017(x)的圖象與曲線$y=\frac{1}{x-2017}$的交點坐標(biāo)為( 。
A.$({-1,-\frac{1}{2018}})$B.$({0,\frac{1}{-2017}})$C.$({1,\frac{1}{-2016}})$D.$({2,\frac{1}{-2015}})$

分析 由題意,可先求出f1(x),f2(x),f3(x)…,歸納出fn(x)的表達(dá)式,即可得出f2017(x)的表達(dá)式,進(jìn)而得到答案.

解答 解:由題意f1(x)=f(x)=$\frac{x}{1-x}$.
f2(x)=f(f1(x))=$\frac{\frac{x}{1-x}}{1-\frac{x}{1-x}}$=$\frac{x}{1-2x}$,
f3(x)=f(f2(x))=$\frac{\frac{x}{1-2x}}{1-\frac{x}{1-2x}}$=$\frac{x}{1-3x}$,

fn(x)=f(fn-1(x))=$\frac{x}{1-nx}$,
∴f2017(x)=$\frac{x}{1-2017x}$,
由$\left\{\begin{array}{l}y=\frac{1}{x-2017}\\ y=\frac{x}{1-2017x}\end{array}\right.$得:$\left\{\begin{array}{l}x=1\\ y=\frac{1}{-2016}\end{array}\right.$,或$\left\{\begin{array}{l}x=-1\\ y=\frac{1}{-2018}\end{array}\right.$,
由${f_1}(x)=f(x)=\frac{x}{1-x}$中x≠1得:
函數(shù)y=f2017(x)的圖象與曲線$y=\frac{1}{x-2017}$的交點坐標(biāo)為$({-1,-\frac{1}{2018}})$,
故選:A

點評 本題考查邏輯推理中歸納推理,由特殊到一般進(jìn)行歸納得出結(jié)論是此類推理方法的重要特征.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,$\frac{sinA+sinB}{c}$=$\frac{\sqrt{2}sinB-sinC}{b-a}$.
(1)求角A的大;
(2)若△ABC為銳角三角形,求$\frac{c}$的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知θ為第二象限角,且$tan(θ-\frac{π}{4})=3$,則sinθ+cosθ=$\frac{{\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)$f(x)=\frac{x^2}{2}-klnx,k>0$的單調(diào)增區(qū)間為$({\sqrt{k},+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知直線l1:3x+2y+1=0,l2:x-2y-5=0,設(shè)直線l1,l2的交點為A,則點A到直線${l_0}:y=-\frac{3}{4}x-\frac{5}{2}$的距離為(  )
A.1B.3C.$\frac{{5\sqrt{7}}}{7}$D.$\frac{{15\sqrt{7}}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)$f(x)=\frac{a}{x}+({1-a})x$(其中a為非零實數(shù)),且方程$xf({\frac{1}{x}})=4x-3$有且僅有一個實數(shù)根.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)證明:函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.直三棱柱ABC-A1B1C1的各頂點都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,則此球的表面積等于( 。
A.20πB.10πC.D.5$\sqrt{5}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一個幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是( 。
A.4cm2B.$\frac{43}{2}$cm2C.23cm2D.24cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若直線x+y+m=0與圓x2+y2=m相切,則m的值是( 。
A.0或2B.2C.$\sqrt{2}$D.$\sqrt{2}$或2

查看答案和解析>>

同步練習(xí)冊答案