計(jì)算:
(1)log2
7
48
+log212-
1
2
log242-1
(2)0.027 -
1
3
-(-
1
6
-2+2560.75+(
1
3
-1
0-3-1
考點(diǎn):根式與分?jǐn)?shù)指數(shù)冪的互化及其化簡(jiǎn)運(yùn)算,有理數(shù)指數(shù)冪的化簡(jiǎn)求值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用對(duì)數(shù)的運(yùn)算法則和運(yùn)算性質(zhì)求解.
(2)利用根式與分?jǐn)?shù)指數(shù)冪的運(yùn)算法則求解.
解答: 解:(1)log2
7
48
+log212-
1
2
log242-1
=log2(
7
48
×12×
1
42
×
1
2
)

=log22-
3
2
=-
3
2

(2)0.027 -
1
3
-(-
1
6
-2+2560.75+(
1
3
-1
0-3-1
=0.3-1-36+64+1-
1
3

=32.
點(diǎn)評(píng):本題考查根式、分?jǐn)?shù)指數(shù)冪、對(duì)數(shù)的化簡(jiǎn)求值,是基礎(chǔ)題,解題時(shí)要注意運(yùn)算法則的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)+2f(-x)=x2+2x,求:
(1)f(x)的解析式;
(2)f(-2)+f(2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文科)已知二元一次不等式組
x-y+1≤0
y≤4
x≥0

(1)在圖中畫出不等式組表示的平面區(qū)域.
(2)求所表示的平面區(qū)域的面積
(3)若z=2x+y,求z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=ex-1.當(dāng)a>ln2-1且x>0時(shí),證明:f(x)>x2-2ax.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-ax+
2
x
(a∈R).
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)y=f(x)在定義域內(nèi)是減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=-x2+2ax+1-a,
(Ⅰ)若函數(shù)f(x)在區(qū)間[0,1]上的最大值為2,求實(shí)數(shù)a的值;
(Ⅱ)若方程f(x)=0的根一個(gè)在區(qū)間(-1,0)內(nèi),另一個(gè)在區(qū)間(1,2)內(nèi),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={-4,-2,0,1,3,5},在平面直角坐標(biāo)系中,點(diǎn)M(x,y)的坐標(biāo)x∈A,y∈A,求:
(1)點(diǎn)M正好在第二象限的概率;
(2)點(diǎn)M不在x軸上的概率;
(3)點(diǎn)M正好落在區(qū)域
x+y-8<0
x>0
y>0
上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=lnx+
x
-1,證明:當(dāng)x>1時(shí),f(x)<
3
2
( x-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用“輾轉(zhuǎn)相除法”可求得21672,8127的最大公約數(shù)是
 
;
用“更相減損術(shù)”可求得459與357的最大公約數(shù)是
 

用秦九韶算法計(jì)算多項(xiàng)式f(x)=12+35x-8x2+9x3+6x4+5x5+3x6在x=-4時(shí)的值時(shí),v3的值為
 
;
十進(jìn)制數(shù)100轉(zhuǎn)換成二進(jìn)制數(shù)為
 
;
將八進(jìn)制數(shù)5027(8)化成十進(jìn)制數(shù)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案