分析 (1)因為函數$f(x)=\frac{1}{2}{x^2}+alnx-3x$(x>0),求出導函數,利用x=1是函數f(x)的極大值點.求出a.然后驗證即可.
(2)求出函數g(x)的單調遞增區(qū)間.又由(1)可知函數f(x)的單調遞增區(qū)間是(0,1),(2,+∞),列出不等式組,求解b 的范圍即可.
解答 解:(1)因為函數$f(x)=\frac{1}{2}{x^2}+alnx-3x$(x>0)
所以f′(x)=x+$\frac{a}{x}$-3,(x>0)----------------------(2分),
又因為x=1是函數f(x)的極大值點.
所以${f^′}(1)=\frac{{{1^2}-3×1+a}}{1}=0$,解得a=2---------------------(4分)
檢驗:當a=2時,${f^′}(x)=\frac{{{x^2}-3x+2}}{x}=\frac{{({x-1})({x-2})}}{x}$(x>0)
當x∈(0,1),(2,+∞)時,f′(x)>0,當x∈(1,2)時,f′(x)<0,
所以x=1是函數f(x)的極大值點,a=2符合題意.----------------------(6分)
(2)g(x)=-x2+8x=-(x-4)2+16
所以函數g(x)的單調遞增區(qū)間是(4,+∞)----------------------(8分)
又由(1)可知函數f(x)的單調遞增區(qū)間是(0,1),(2,+∞)
所以依題意得$\left\{{\begin{array}{l}{b≥0}\\{b+1≤1}\\{b+1≤4}\end{array}}\right.$或$\left\{{\begin{array}{l}{b≥2}\\{b+1≤4}\end{array}}\right.$----------------------(10分)
解得 b=0或 2≤b≤3
所以實數b的取值范圍是{0}∪[2,3]----------------------(12分)
點評 本題考查函數的導數的應用,函數的極值以及單調性的應用,考查轉化思想以及計算能力.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(n)≥$\frac{lo{g}_{2}n+2}{2}$(n∈N*) | B. | f(2n)≥$\frac{n+2}{2}$(n∈N*) | ||
C. | f(2n)≥$\frac{lo{g}_{2}n+2}{2}$(n∈N*) | D. | f(2n)≥$\frac{n+2}{2}$(n∈N*) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 45 | B. | 40 | C. | 35 | D. | 30 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,0) | B. | (2,+∞) | C. | (0,1) | D. | (0,2) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com