如圖1,四棱錐中,底面,面是直角梯形,為側(cè)棱上一點.該四棱錐的俯視圖和側(cè)(左)視圖如圖2所示.   
(1)證明:平面;
(2)線段上是否存在點,使所成角的余弦值為?若存在,找到所有符合要求的點,并求的長;若不存在,說明理由.

(1),證得.又因為 平面推出,             
,所以 平面
(2)點位于點處,此時;或中點處,此時.

解析試題分析:(1)【方法一】證明:由俯視圖可得,,所以 . 2分
又因為 平面,所以 ,              4分
,所以 平面.               6分
(1)【方法二】證明:因為平面,建立如圖所示
的空間直角坐標系. 在△中,易得,所以 ,

因為 , 所以, .由俯視圖和左視圖可得:

所以
因為 ,所以.               3分
又因為 平面,所以 ,又  
所以 平面.                                               6分
(2)解:線段上存在點,使所成角的余弦值為
證明如下:設(shè) ,其中.                                 7分
所以 ,
要使所成角的余弦值為,則有 ,        9分
所以 ,解得,均適合.         11分
故點位于點處,此時;或中點處,此時,        12分
考點:三視圖,立體幾何中的垂直關(guān)系、距離的計算。
點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用空間向量,省去繁瑣的證明,也是解決立體幾何問題的一個基本思路。注意運用轉(zhuǎn)化與化歸思想,將空間問題轉(zhuǎn)化成平面問題。本題將三視圖與證明、計算問題綜合考查,凸顯三視圖的基礎(chǔ)地位,必須正確還原幾何體。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知在四棱錐中,底面是邊長為2的正方形,側(cè)棱平面,且, 為底面對角線的交點,分別為棱的中點

(1)求證://平面;
(2)求證:平面;
(3)求點到平面的距離。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖1,的直徑AB=4,點C、D為上兩點,且CAB=45°,DAB=60°,F(xiàn)為弧BC的中點.沿直徑AB折起,使兩個半圓所在平面互相垂直,如圖2.
(I)求證:OF平面ACD;
(Ⅱ)求二面角C—AD—B的余弦值;
(Ⅲ)在弧BD上是否存在點G,使得FG平面ACD?若存在,試指出點G的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知AC⊥平面CDE,BD//AC,△ECD為等邊三角形,F(xiàn)為ED邊的中點,CD=BD=2AC=2

(1)求證:CF∥面ABE;
(2)求證:面ABE⊥平面BDE:
(3)求三棱錐F—ABE的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知四棱錐P-ABCD的直觀圖(如圖(1))及左視圖(如圖(2)),底面ABCD是邊長為2的正方形,平面PAB⊥平面ABCD,PA=PB。

(1)求證:AD⊥PB;
(2)求異面直線PD與AB所成角的余弦值;
(3)求平面PAB與平面PCD所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知平面,平面,△為等邊三角形,的中點.

(1)求證:平面;
(2)求證:平面平面
(3)求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,側(cè)棱AA1⊥面ABC,D、E分別是棱A1B1、AA1的中點,點F在棱AB上,且

(Ⅰ)求證:EF∥平面BDC1
(Ⅱ)求二面角E-BC1-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在矩形ABCD中,已知AB=3, AD=1, E、F分別是AB的兩個三等分點,AC,DF相交于點G,建立適當?shù)钠矫嬷苯亲鴺讼担?br />
(1)若動點M到D點距離等于它到C點距離的兩倍,求動點M的軌跡圍成區(qū)域的面積;
(2)證明:E G ⊥D F。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)為正方形的中心,四邊形是平行四邊形,且平面平面,若.

(1)求證:平面.
(2)線段上是否存在一點,使平面?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案