分析 由f(x+2)=-$\frac{1}{f(x)}$求出函數(shù)的周期,由周期性、偶函數(shù)的性質(zhì)將f(6.5)轉(zhuǎn)化為f(1.5),代入已知的解析式由對(duì)數(shù)的運(yùn)算性質(zhì)求值.
解答 解:由f(x+2)=-$\frac{1}{f(x)}$得,f(x+4)=$-\frac{1}{f(x+2)}$=f(x),
∴函數(shù)f(x)的周期是4,
∵f(x)是定義在R上的偶函數(shù),當(dāng)1≤x<2時(shí),$f(x)={log_{\frac{1}{2}}}({2-x})$,
∴f(6.5)=f(4+2.5)=f(2.5)=f(-4+2.5)
=f(-1.5)=f(1.5)=$lo{g}_{\frac{1}{2}}(2-1.5)$=$lo{g}_{\frac{1}{2}}\frac{1}{2}$=1,
故答案為:1.
點(diǎn)評(píng) 本題考查了函數(shù)的周期性、奇偶性的綜合應(yīng)用,對(duì)數(shù)的運(yùn)算性質(zhì),以及轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{2}{sinα}$ | B. | $-\frac{2}{tanα}$ | C. | $\frac{2}{{co{s}α}}$ | D. | $-\frac{2}{sinαcosα}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2,1) | B. | (-1,2) | C. | (-1,-2) | D. | (1,-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 1 | C. | -3 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com