12.計算:
(1)${({\frac{1}{125}})^{-\frac{2}{3}}}×{5^{-1}}÷{({\frac{1}{16}})^{\frac{1}{4}}}$;
(2)$\frac{1}{2}$lg$\frac{32}{9}$-$\frac{4}{3}$lg$\sqrt{8}$+lg$\sqrt{45}$.

分析 (1)直接利用有理指數(shù)冪以及根式運(yùn)算法則求解即可.
(2)利用對數(shù)運(yùn)算法則化簡求解即可.

解答 解:(1)${({\frac{1}{125}})^{-\frac{2}{3}}}×{5^{-1}}÷{({\frac{1}{16}})^{\frac{1}{4}}}$
=${(\frac{1}{5})}^{-2}×{5}^{-1}÷{(\frac{1}{2})}^{4×\frac{1}{4}}$
=5÷$\frac{1}{2}$
=10.
(2)$\frac{1}{2}$lg$\frac{32}{9}$-$\frac{4}{3}$lg$\sqrt{8}$+lg$\sqrt{45}$
=$\frac{5}{2}lg2-lg3-2lg2+\frac{1}{2}lg9+\frac{1}{2}lg5$
=$\frac{1}{2}lg2+\frac{1}{2}lg5$
=$\frac{1}{2}$.

點(diǎn)評 本題考查對數(shù)運(yùn)算法則的應(yīng)用,有理指數(shù)冪的化簡求值,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=1+\frac{|x|-x}{2}({-2<x≤2})$.
(1)畫出該函數(shù)的圖象;
(2)寫出該函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知集合A={x|2<x≤6},B={x|3<x<9}.
(1)分別求∁R(A∩B),(∁RB)∪A;
(2)已知C={x|a<x<a+1},若C⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知扇形的周長為16cm,圓心角為2rad,求該扇形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,已知$c=\sqrt{3},b=1,C={120°}$
(1)求∠B和∠A;
(2)求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知△ABC三個頂點(diǎn)是A(3,3),B(-3,1),C(2,0).
(1)求AB邊中線CD所在直線方程;
(2)求AB邊的垂直平分線的方程;
(3)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)y=1-2x(x∈[2,3])的值域為[-7,-3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.計算:$\frac{1}{2}lg16$+lg50-lg2的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.(2015年1月•豐臺期末•16)如圖.某機(jī)器人的運(yùn)動軌道是邊長為1米的正三角形ABC.開機(jī)后它從A點(diǎn)出發(fā),沿軌道先逆時針運(yùn)動再順時針運(yùn)動,每運(yùn)動6米改變-次運(yùn)動方向(假設(shè)按此方式無限運(yùn)動下去).運(yùn)動過程中隨時記錄逆時針運(yùn)動的總路程s1和順時針運(yùn)動的總路程s2.x為該機(jī)器人的“運(yùn)動狀態(tài)參數(shù)”,規(guī)定:逆時針運(yùn)動時x=s1,順時針運(yùn)動時x=-s2.機(jī)器人到A點(diǎn)的距離d與x滿足函數(shù)關(guān)系d=f(x).現(xiàn)有如下結(jié)論:
①f(x)的值域為[0.1];                                            
②f(x)是以3為周期的函數(shù);
③f(x)是定義在R上的奇函數(shù):
④f(x)在區(qū)間產(chǎn)[-3.-2]上單調(diào)遞增.
其中正確的有①②④(寫出所有正確結(jié)論的編號).

查看答案和解析>>

同步練習(xí)冊答案