【題目】下列說法正確的個(gè)數(shù)是( )

①命題“若,則中至少有一個(gè)不小于2”的逆命題是真命題

②命題“設(shè),若,則”是一個(gè)真命題

③“,”的否定是“,

④已知,都是實(shí)數(shù),“”是“”的充分不必要條件

A.1B.2C.3D.4

【答案】A

【解析】

由四種命題的關(guān)系可得選項(xiàng)A、B的真假,由特稱命題的否定為全稱命題可得選項(xiàng)C的真假,由充分必要條件可得選項(xiàng)D的真假.

解:對于①,命題“若,則,中至少有一個(gè)不小于2”的逆命題為“若中至少有一個(gè)不小于2,則”,此命題為假命題,即①錯(cuò)誤;

對于②,命題“設(shè),若,則”的逆否命題為“若,則”,可得此命題為真命題,即原命題為真命題,即②正確,

對于③,“”的否定是“,”,即③錯(cuò)誤,

對于④,已知都是實(shí)數(shù),“”不能推出“”,即“”不是“”的充分不必要條件,即④錯(cuò)誤,

綜上可得:說法正確的個(gè)數(shù)是1個(gè),

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為培養(yǎng)學(xué)生對傳統(tǒng)文化的興趣,某校從理科甲班抽取60人,從文科乙班抽取50人參加傳統(tǒng)文化知識(shí)競賽.

1)根據(jù)題目條件完成下邊列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為學(xué)生的傳統(tǒng)文化知識(shí)競賽成績優(yōu)秀與文理分科有關(guān).

優(yōu)秀人數(shù)

非優(yōu)秀人數(shù)

總計(jì)

甲班

乙班

20

總計(jì)

60

2)現(xiàn)已知,,三人獲得優(yōu)秀的概率分別為,,,設(shè)隨機(jī)變量表示,三人中獲得優(yōu)秀的人數(shù),求的分布列及期望

附:,

0.100

0.050

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,過曲線外的一點(diǎn)(其中,為銳角)作平行于的直線與曲線分別交于

(Ⅰ) 寫出曲線和直線的普通方程(以極點(diǎn)為原點(diǎn),極軸為 軸的正半軸建系);

)若成等比數(shù)列,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線的左右焦點(diǎn)分別為,左右項(xiàng)點(diǎn)分別為,點(diǎn)上的動(dòng)點(diǎn).

(1)若點(diǎn)在第一象限, ,求點(diǎn)的坐標(biāo);

(2)點(diǎn)不重合,直線分別交軸于兩點(diǎn),求證: ;

(3)若點(diǎn)在左支上,是否存在實(shí)數(shù),使得到直線的距離與之比為定值?若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,.

1)若,且,求的通項(xiàng)公式;

2)設(shè)的第項(xiàng)是最大項(xiàng),即,求證:的第項(xiàng)是最大項(xiàng);

3)設(shè),求的取值范圍,使得有最大值與最小值,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果存在常數(shù),使得數(shù)列滿足:若是數(shù)列中的一項(xiàng),則也是數(shù)列 中的一項(xiàng),稱數(shù)列為“兌換數(shù)列”,常數(shù)是它的“兌換系數(shù)”.

1)若數(shù)列:是“兌換系數(shù)”為的“兌換數(shù)列”,求的值;

2)已知有窮等差數(shù)列的項(xiàng)數(shù)是,所有項(xiàng)之和是,求證:數(shù)列“兌換數(shù)列”,并用表示它的“兌換系數(shù)”;

3)對于一個(gè)不小于3項(xiàng),且各項(xiàng)皆為正整數(shù)的遞增數(shù)列,是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“類函數(shù)”.

(1)已知函數(shù),試判斷是否為“類函數(shù)”?并說明理由;

(2)設(shè)是定義在上的“類函數(shù)”,求是實(shí)數(shù)的最小值;

(3)若 為其定義域上的“類函數(shù)”,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,),,且函數(shù)圖像上的任意兩條對稱軸之間距離的最小值是.

1)求的值和的單調(diào)增區(qū)間;

2)將函數(shù)的圖像向右平移個(gè)單位后,得到函數(shù)的圖像,求函數(shù)上的最值,并求取得最值時(shí)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)處的切線方程;

2)是否存在非負(fù)整數(shù),使得函數(shù)是單調(diào)函數(shù),若存在,求出的值;若不存在,請說明理由;

3)已知,若存在,使得當(dāng)時(shí),的最小值是,求實(shí)數(shù)的取值范圍.(注:自然對數(shù)的底數(shù)

查看答案和解析>>

同步練習(xí)冊答案