如圖,河道上有一座拋物線型拱橋,在正常水位時(shí),拱圈最高點(diǎn)距水面為8m,拱圈內(nèi)水面寬16m.,為保證安全,要求通過的船頂部(設(shè)為平頂)與拱橋頂部在豎直方向上高度之差至少要有0.5m.
(1)一條船船頂部寬4m,要使這艘船安全通過,則船在水面以上部分高不能超過多少米?
(2)近日因受臺(tái)風(fēng)影響水位暴漲2.7m,為此必須加重船載,降低船身,才能通過橋洞.試問:一艘頂部寬4
2
m,在水面以上部分高為4m的船船身應(yīng)至少降低多少米才能安全通過?
(1)如圖所示,以過拱橋的最高點(diǎn)且平行水面的直線為X軸,最高點(diǎn)O為原點(diǎn)建立直角坐標(biāo)系(1分)
設(shè)拋物線方程為x2=-2py,將點(diǎn)(8,-8)代入得2p=8,
∴拋物線方程是x2=-8y,(4分)
將x=2代入得y=-
1
2
,8-0.5-0.5=7,
故船在水面以上部分高不能超過7米.(6分)
(2)將x=2
2
代入方程x2=-8y得y=-1,(8分)
此時(shí)1+0.5+2.7+4=8.2,
故船身應(yīng)至少降低0.2米(10分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的拋物線截直線2x-y-4=0所得的弦長(zhǎng)為3
5
,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若點(diǎn)A的坐標(biāo)為(3,2),F(xiàn)為拋物線y2=2x的焦點(diǎn),點(diǎn)P是拋物線上的一動(dòng)點(diǎn),則|PA|+|PF|取得最小值時(shí)點(diǎn)P的坐標(biāo)是( 。
A.(0,0)B.(1,1)C.(2,2)D.(
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在平面直角坐標(biāo)系中,已知三點(diǎn)A(m,n),B(n,t),C(t,m),直線AC的斜率與傾斜角為鈍角的直線AB的斜率之和為
5
3
,而直線AB恰好經(jīng)過拋物線x2=2p(y-q),(p>0)的焦點(diǎn)F并且與拋物線交于P、Q兩點(diǎn)(P在y軸左側(cè)).則|
PF
QF
|=( 。
A.9B.4C.
173
2
D.
21
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y2=4x,點(diǎn)M(1,0)關(guān)于y軸的對(duì)稱點(diǎn)為N,直線l過點(diǎn)M交拋物線于A,B兩點(diǎn).
(Ⅰ)證明:直線NA,NB的斜率互為相反數(shù);
(Ⅱ)求△ANB面積的最小值;
(Ⅲ)當(dāng)點(diǎn)M的坐標(biāo)為(m,0)(m>0,且m≠1).根據(jù)(Ⅰ)(Ⅱ)推測(cè)并回答下列問題(不必說明理由):
①直線NA,NB的斜率是否互為相反數(shù)?
②△ANB面積的最小值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,一隧道內(nèi)設(shè)雙行線公路,其截面由一個(gè)長(zhǎng)方形和拋物線構(gòu)成,為保安全,要求行駛車輛頂部(設(shè)為平頂)與隧道頂部在豎直方向上高度之差至少要有0.5m.若行駛車道總寬度AB為6m,計(jì)算車輛通過隧道的限制高度是多少米?(精確到0.1m)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一個(gè)截面為拋物線形的舊河道(如圖1),河口寬AB=4米,河深2米,現(xiàn)要將其截面改造為等腰梯形(如圖2),要求河道深度不變,而且施工時(shí)只能挖土,不準(zhǔn)向河道填土.
(1)建立恰當(dāng)?shù)闹苯亲鴺?biāo)系并求出拋物線弧AB的標(biāo)準(zhǔn)方程;
(2)試求當(dāng)截面梯形的下底(較長(zhǎng)的底邊)長(zhǎng)為多少米時(shí),才能使挖出的土最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓的對(duì)稱中心在坐標(biāo)原點(diǎn),一個(gè)頂點(diǎn)為,右焦點(diǎn)F與點(diǎn) 的距離為2。
(1)求橢圓的方程;
(2)是否存在斜率 的直線使直線與橢圓相交于不同的兩點(diǎn)M,N滿足,若存在,求直線l的方程;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知、是橢圓的兩個(gè)焦點(diǎn),為橢圓上一點(diǎn),且,若的面積為9,則的值為( )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案