橢圓的對(duì)稱中心在坐標(biāo)原點(diǎn),一個(gè)頂點(diǎn)為,右焦點(diǎn)F與點(diǎn) 的距離為2。
(1)求橢圓的方程;
(2)是否存在斜率 的直線使直線與橢圓相交于不同的兩點(diǎn)M,N滿足,若存在,求直線l的方程;若不存在,說(shuō)明理由。
(1) (2) 存在;。

試題分析:(1) 依題意,設(shè)橢圓方程為,然后解關(guān)于a、b、c的方程組即可.
(2) 由知點(diǎn)在線段的垂直平分線上,由消去 
轉(zhuǎn)化為方程有兩個(gè)不相等的實(shí)數(shù)根,再利用根與系數(shù)的關(guān)系,代入方程求出k即可.        
(1)依題意,設(shè)橢圓方程為,則其右焦點(diǎn)坐標(biāo)為 ,由,得,即,解得。 又 ∵ ,∴,即橢圓方程為。      (4分)
(2)方法一:由知點(diǎn)在線段的垂直平分線上,由消去 (*)          ( 5分)
,得方程(*)的,即方程(*)有兩個(gè)不相等的實(shí)數(shù)根。    (6分)
設(shè)、,線段MN的中點(diǎn),則,
 ,即 
,∴直線的斜率為,        (9分)
,得,∴,解得:,  (11分)
∴l(xiāng)的方程為。         ( 12分)
方法二:直線l恒過(guò)點(diǎn)(0,-2), 且點(diǎn)(0,-2)在橢圓上, ∴不妨設(shè)M(0,-2), 則|AM|=4    (6分)
∴|AN|="4," 故N在以A為圓心, 4為半徑的圓上,即在的圖像上.
聯(lián)立 化簡(jiǎn)得 ,解得           (8分)
當(dāng)y=-2時(shí),N和M重合,舍去.當(dāng)y=0時(shí),, 因此      (11分)
∴l(xiāng)的方程為。      ( 12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓經(jīng)過(guò)橢圓的右焦點(diǎn)和上頂點(diǎn)
(1)求橢圓的方程;
(2)過(guò)原點(diǎn)的射線與橢圓在第一象限的交點(diǎn)為,與圓的交點(diǎn)為,的中點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若拋物線y2=4x的準(zhǔn)線也是雙曲線
x2
a2
-
4y2
3
=1
的一條準(zhǔn)線,則該雙曲線的漸近線方程為(  )
A.y=±2xB.y=±
2
2
x
C.y=±
3
x
D.y=±
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,河道上有一座拋物線型拱橋,在正常水位時(shí),拱圈最高點(diǎn)距水面為8m,拱圈內(nèi)水面寬16m.,為保證安全,要求通過(guò)的船頂部(設(shè)為平頂)與拱橋頂部在豎直方向上高度之差至少要有0.5m.
(1)一條船船頂部寬4m,要使這艘船安全通過(guò),則船在水面以上部分高不能超過(guò)多少米?
(2)近日因受臺(tái)風(fēng)影響水位暴漲2.7m,為此必須加重船載,降低船身,才能通過(guò)橋洞.試問(wèn):一艘頂部寬4
2
m,在水面以上部分高為4m的船船身應(yīng)至少降低多少米才能安全通過(guò)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若拋物線y2=x上兩點(diǎn)A(x1,y1)、B(x2,y2)關(guān)于直線y=x+b對(duì)稱,且y1y2=-1,則實(shí)數(shù)b的值為( 。
A.-3B.3C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知雙曲線)的焦距為,右頂點(diǎn)為,拋物線的焦點(diǎn)為,若雙曲線截拋物線的準(zhǔn)線所得線段長(zhǎng)為,且,則雙曲線的漸近線方程為_(kāi)__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線C:的焦點(diǎn)為F,準(zhǔn)線為,P是上一點(diǎn),Q是直線PF與C得一個(gè)焦點(diǎn),若,則(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知P是圓上任意一點(diǎn),點(diǎn)N的坐標(biāo)為(2,0),線段NP的垂直平分線交直線MP于點(diǎn)Q,當(dāng)點(diǎn)P在圓M上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡為C.
(1)求出軌跡C的方程,并討論曲線C的形狀;
(2)當(dāng)時(shí),在x軸上是否存在一定點(diǎn)E,使得對(duì)曲線C的任意一條過(guò)E的弦AB,為定值?若存在,求出定點(diǎn)和定值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2013•浙江)已知拋物線C的頂點(diǎn)為O(0,0),焦點(diǎn)F(0,1)
(Ⅰ)求拋物線C的方程;
(Ⅱ)過(guò)F作直線交拋物線于A、B兩點(diǎn).若直線OA、OB分別交直線l:y=x﹣2于M、N兩點(diǎn),求|MN|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案