A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 在①中,由已知推導(dǎo)出C1M⊥AA1,C1M⊥A1B1,從而得到C1M⊥平面A1ABB1;在②中,由已知推導(dǎo)出A1B⊥平面AC1M,從而A1B⊥AM,由AN$\underset{∥}{=}$B1M,得AM∥B1N,進而得到A1B⊥NB1;在③中,由AM∥B1N,C1M∥CN,得到平面AMC1∥平面CNB1.
解答 解:在①中:∵在直三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,C1M?平面A1B1C1,
∴C1M⊥AA1,
∵B1C1=A1C1,M是A1B1的中點,
∴C1M⊥A1B1,AA1∩A1B1=A1,∴C1M⊥平面A1ABB1,故①正確;
在②中:∵C1M⊥平面A1ABB1,∴CN⊥平面A1ABB1,A1B?平面A1ABB1,
∴A1B⊥CN,A1B⊥C1M,
∵AC1⊥A1B,AC1∩C1M=C1,∴A1B⊥平面AC1M,AM?面AC1M,
∴A1B⊥AM,
∵AN$\underset{∥}{=}$B1M,∴AM∥B1N,
∴A1B⊥NB1,故②正確;
在③中:∵AM∥B1N,C1M∥CN,AM∩C1M=M,B1N∩CN=N,
∴平面AMC1∥平面CNB1,故③正確.
故選:D.
點評 本題考查命題真假的判斷,是中檔題,解題時要注意空間中線線、線面、面面間的位置關(guān)系的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{6}}}{3}$ | B. | $\frac{{\sqrt{6}}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 72一$\frac{9π}{2}$ | B. | 72-4π | C. | 72一$\frac{7π}{2}$ | D. | 72-3π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3π+4+$\sqrt{3}$+$\sqrt{7}$ | B. | 3π+6+$\sqrt{3}$ | C. | 2π+4+$\sqrt{3}$$+\sqrt{7}$ | D. | 2π+6$+\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com