2.如圖所示,在直三棱柱ABC-A1B1C1中,BC=AC,AC1⊥A1B,M,N分別是A1B1,AB的中點,給出下列結(jié)論:①C1M⊥平面A1ABB1,②A1B⊥NB1,③平面AMC1∥平面CNB1,其中正確結(jié)論的個數(shù)為( 。
A.0B.1C.2D.3

分析 在①中,由已知推導(dǎo)出C1M⊥AA1,C1M⊥A1B1,從而得到C1M⊥平面A1ABB1;在②中,由已知推導(dǎo)出A1B⊥平面AC1M,從而A1B⊥AM,由AN$\underset{∥}{=}$B1M,得AM∥B1N,進而得到A1B⊥NB1;在③中,由AM∥B1N,C1M∥CN,得到平面AMC1∥平面CNB1

解答 解:在①中:∵在直三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,C1M?平面A1B1C1,
∴C1M⊥AA1,
∵B1C1=A1C1,M是A1B1的中點,
∴C1M⊥A1B1,AA1∩A1B1=A1,∴C1M⊥平面A1ABB1,故①正確;
在②中:∵C1M⊥平面A1ABB1,∴CN⊥平面A1ABB1,A1B?平面A1ABB1,
∴A1B⊥CN,A1B⊥C1M,
∵AC1⊥A1B,AC1∩C1M=C1,∴A1B⊥平面AC1M,AM?面AC1M,
∴A1B⊥AM,
∵AN$\underset{∥}{=}$B1M,∴AM∥B1N,
∴A1B⊥NB1,故②正確;
在③中:∵AM∥B1N,C1M∥CN,AM∩C1M=M,B1N∩CN=N,
∴平面AMC1∥平面CNB1,故③正確.
故選:D.

點評 本題考查命題真假的判斷,是中檔題,解題時要注意空間中線線、線面、面面間的位置關(guān)系的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在直三棱柱(側(cè)棱垂直底面的棱柱)ABC-A1B1C1中,∠ACB=90°,AC=3,BC=4,AA1=4,點D是AB的中點.
(Ⅰ)求證:AC⊥BC1;
(Ⅱ)求證:AC1∥平面CDB1;
(Ⅲ)求異面直線AC1與B1C所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知等差數(shù)列{an},滿足a1=3,a5=15,數(shù)列{bn}滿足b1=4,b5=31,設(shè)cn=bn-an,且數(shù)列{cn}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項公式.
(2)求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{ax+b}{{x}^{2}+1}$在點(-1,f(-1))的切線方程為x+y+3=0.
(I)求函數(shù)f(x)的解析式;
(II)設(shè)g(x)=lnx,當x∈[1,+∞)時,求證:g(x)≥f(x);
(III)已知0<a<b,求證:$\frac{lnb-lna}{b-a}$$>\frac{2a}{{a}^{2}+^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,B=45°,C=60°,c=1,則b=( 。
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某幾何體的三視圖,如圖所示,則該幾何體的體積為( 。
A.72一$\frac{9π}{2}$B.72-4πC.72一$\frac{7π}{2}$D.72-3π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求下列函數(shù)的值域;
(1)f(x)=x-$\sqrt{1-2x}$;     
(2)f(x)=$\frac{1}{{\sqrt{x-{x^2}}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.正三棱柱被一個平面截去一部分后與半圓柱組成一個幾何體,該幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.3π+4+$\sqrt{3}$+$\sqrt{7}$B.3π+6+$\sqrt{3}$C.2π+4+$\sqrt{3}$$+\sqrt{7}$D.2π+6$+\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=$\left\{\begin{array}{l}-2x,x≤0\\{x^2}+1,x>0\end{array}$,若f[f(a)]=0,則a=0.

查看答案和解析>>

同步練習(xí)冊答案