函數(shù)f(x)=
1
1-x+x2
(x∈[1,2])的最大值是( 。
A、
3
4
B、
4
5
C、1
D、
4
3
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先將函數(shù)變形為f(x)=
1
(x-
1
2
)
2
+
3
4
,x∈[1,2],通過討論(x-
1
2
)
2
+
3
4
的單調(diào)性,從而得出函數(shù)的最值.
解答: 解:f(x)=
1
(x-
1
2
)
2
+
3
4
,x∈[1,2],
當(dāng)x=1時(shí),(x-
1
2
)
2
+
3
4
最小,為1,
∴f(x)max=f(1)=1,
故選:C.
點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性問題,考查了二次函數(shù)的性質(zhì),是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

M={x∈R|(1+k2)x≤k4+4},對(duì)任意的k∈R,總有(  )
A、2∉M,0∉M
B、2∈M,0∈M
C、2∈M,0∉M
D、2∉M,0∈M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)g(x)=
1-x
+
1
x
的定義域?yàn)?div id="e19dsdy" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若F1,F(xiàn)2是橢圓
x2
25
+
y2
16
=1的兩個(gè)焦點(diǎn),過F2的直線與橢圓交于A,B兩點(diǎn),則△ABF1的周長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線mx+y+m-1=0與圓x2-2x+y2-4y+1=0相交于A、B兩點(diǎn),求線段AB長(zhǎng)度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-3,g(x)=bx-1+cx-2(a,b∈R),且g(1)-g(-
1
2
)=f(0).
(1)試求b,c所滿足的關(guān)系式;
(2)若c=0時(shí),方程f(x)=g(x)在(0,+∞)內(nèi)有唯一解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=elnx,g(x)=
1
e
f(x)-(x+1)(e為自然對(duì)數(shù)).
(1)求函數(shù)g(x)的最大值;
(2)求證:e 1+
1
2
+
1
3
+…
1
n
>n+1(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:log327×92

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐S-ABC中,SA=AB=AC=2,∠ASB=∠BSC=∠CSA=30°,M,N分別為SB,SC上的點(diǎn),則△AMN周長(zhǎng)最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案