【題目】已知函數(shù)f(x)=lnx﹣ax,其中a為實數(shù).
(1)求出f(x)的單調(diào)區(qū)間;
(2)在a<1時,是否存在m>1,使得對任意的x∈(1,m),恒有f(x)+a>0,并說明理由.
【答案】(1)答案見解析;(2)在a<1時,存在m>1,使得對任意x∈(1,m)恒有f(x)+a>0。理由見解析。
【解析】
(1)對函數(shù)求導,并分a≤0和a>0兩種情況討論?汕蟪鼋Y果;(2)結合(1)將a<1分為a≤0和兩種情況進行討論即可。
(1)∵f(x)=lnx﹣ax,
∴ ,
當a≤0時,f'(x)>0恒成立,
函數(shù)f(x)在定義域(0,+∞)遞增;無減區(qū)間
當a>0時,令f'(x)=0,則x= ,
當x∈(0,)時,f'(x)>0,函數(shù)為增函數(shù),
當x∈(,+∞)時,f'(x)<0,函數(shù)為減函數(shù)。
(2)在a<1時,存在m>1,使得對任意的x∈(1,m)恒有f(x)+a>0。
理由如下:
由(1)得
當a≤0時,函數(shù)f(x)在(1,m)遞增,
,
,
即f(x)+a>0。
綜上可得:在a<1時,存在m>1,使得對任意x∈(1,m)恒有f(x)+a>0。
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的兩個焦點分別為和,短軸的兩個端點分別為和,點在橢圓上,且滿足,當變化時,給出下列三個命題:
①點的軌跡關于軸對稱;②的最小值為2;
③存在使得橢圓上滿足條件的點僅有兩個,
其中,所有正確命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)求的單調(diào)區(qū)間;
(2)設,且有兩個極值點其中,求的最小值;
(3)證明:>(n∈N*,n≥2).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+|x+2|.
(1)若a=1.解不等式f(x)≤x2﹣1;
(2)若a>0,b>0,c>0.且f(x)的最小值為4﹣b﹣c.求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
某投資公司在2010年年初準備將1000萬元投資到“低碳”項目上,現(xiàn)有兩個項目供選擇:
項目一:新能源汽車.據(jù)市場調(diào)研,投資到該項目上,到年底可能獲利,也可能虧損,且這兩種情況發(fā)生的概率分別為和;
項目二:通信設備.據(jù)市場調(diào)研,投資到該項目上,到年底可能獲利,可能虧損,也可能不賠不賺,且這三種情況發(fā)生的概率分別為、和
(Ⅰ)針對以上兩個投資項目,請你為投資公司選擇一個合理的項目,并說明理由;
(Ⅱ)若市場預期不變,該投資公司按照你選擇的項目長期投資(每一年的利潤和本金繼續(xù)用作投資),問大約在哪一年的年底總資產(chǎn)(利潤+本金)可以翻一番?
(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓M:1(a>b>0)的長軸長為2,離心率為,過點(0,1)的直線l與M交于A,B兩點,且.
(1)求M的方程;
(2)求點P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為,(t為參數(shù))以坐標原點O為極點,以x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=2sinθ,
(1)求直線l的普通方程及曲線C的直角坐標方程;
(2)直線l與x軸交于點P,與曲線C交于A,B兩點,求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】祖暅原理“冪勢既同,則積不容異”中的“冪”指面積,“勢”即是高,意思是:若兩個等高的幾何體在所有等高處的水平截面的面積恒等,則這兩幾何體的體積相等.設夾在兩個平行平面之間的幾何體的體積分別為,它們被平行于這兩個平面的任意平面截得的兩個截面面積分別為,則“恒成立”是“”的( )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了調(diào)查學生的學習情況,由每班隨機抽取名學生進行調(diào)查,若一班有名學生,將每一學生編號從到,請從隨機數(shù)表的第行第、列(下表為隨機數(shù)表的前行)開始,依次向右,直到取足樣本,則第五個編號為_________.
7816 | 6514 | 0802 | 6314 | 0702 | 4369 | 9728 | 0198 |
3204 | 9234 | 4935 | 8200 | 3623 | 4869 | 6938 | 7481 |
7816 | 6514 | 0802 | 6314 | 0702 | 4369 | 9728 | 0198 |
3204 | 9234 | 4935 | 8200 | 3623 | 4869 | 6938 | 7481 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com