【題目】李先生家住小區(qū),他工作在科技園區(qū),從家開(kāi)車(chē)到公司上班路上有兩條路線(如圖),路線上有三個(gè)路口,各路口遇到紅燈的概率均為;路線上有兩個(gè)路口,各路口遇到紅燈的概率依次為.
(Ⅰ)若走路線,求最多遇到1次紅燈的概率;
(Ⅱ)若走路線,求遇到紅燈次數(shù)的數(shù)學(xué)期望;
(Ⅲ)按照“平均遇到紅燈次數(shù)最少”的要求,請(qǐng)你幫助李先生從上述兩條路線中選擇一條最好的上班路線,并說(shuō)明理由.
【答案】(1)(2)(3)選擇路線上班最好.
【解析】
【試題分析】(1)走線路相當(dāng)于次獨(dú)立重復(fù)試驗(yàn),按照二項(xiàng)分布的計(jì)算公式,計(jì)算恰好發(fā)生次和恰好發(fā)生次的概率,相加即可.(2)走線路,則遇到紅燈次數(shù)的可能取值為,按照獨(dú)立事件概率計(jì)算公式計(jì)算對(duì)應(yīng)的概率,寫(xiě)出并求其期望.(3)線路是二項(xiàng)分布,利用公式計(jì)算出期望,由于的期望小,故選線路.
【試題解析】
(Ⅰ)設(shè)“走路線最多遇到1次紅燈”為事件,
則 ,
所以走路線,最多遇到1次紅燈的概率為.
(Ⅱ)依題意,的可能取值為0,1,2.
.
隨機(jī)變量的分布列為:
0 | 1 | 2 | |
所以.
(Ⅲ)設(shè)選擇路線遇到紅燈次數(shù)為,隨機(jī)變量服從二項(xiàng)分布~,所以. 因?yàn)?/span>,所以選擇路線上班最好.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,把滿足條件(對(duì)任意的)的所有數(shù)列構(gòu)成的集合記為.
(1)若數(shù)列的通項(xiàng)為,判斷是否屬于,并說(shuō)明理由;
(2)若數(shù)列的通項(xiàng)為,判斷是否屬于,并說(shuō)明理由;
(3)若數(shù)列是等差數(shù)列,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)P與點(diǎn)的距離比它到直線的距離小1.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)P為直線上任一點(diǎn),過(guò)點(diǎn)P作曲線C的切線,,切點(diǎn)分別為A,B,直線,與y軸分別交于M,N兩點(diǎn),點(diǎn)、的縱坐標(biāo)分別為m,n,求證:m與n的乘積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系,.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,點(diǎn)為上的動(dòng)點(diǎn),為的中點(diǎn).
(1)請(qǐng)求出點(diǎn)軌跡的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的極坐標(biāo)為若直線經(jīng)過(guò)點(diǎn)且與曲線交于點(diǎn),弦的中點(diǎn)為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了比較兩種治療某病毒的藥(分別稱(chēng)為甲藥,乙藥)的療效,某醫(yī)療團(tuán)隊(duì)隨機(jī)地選取了服用甲藥的患者和服用乙藥的患者進(jìn)行研究,根據(jù)研究的數(shù)據(jù),繪制了如圖1等高條形圖
.
(1)根據(jù)等高條形圖,判斷哪一種藥的治愈率更高,不用說(shuō)明理由;
(2)為了進(jìn)一步研究?jī)煞N藥的療效,從服用甲藥的治愈患者和服用乙藥的治愈患者中,分別抽取了10名,記錄他們的治療時(shí)間(單位:天),統(tǒng)計(jì)并繪制了如圖2莖葉圖,從莖葉圖看,哪一種藥的療效更好,并說(shuō)明理由;
(3)標(biāo)準(zhǔn)差s除了可以用來(lái)刻畫(huà)一組數(shù)據(jù)的離散程度外,還可以刻畫(huà)每個(gè)數(shù)據(jù)偏離平均水平的程度,如果出現(xiàn)了治療時(shí)間在(3s,3s)之外的患者,就認(rèn)為病毒有可能發(fā)生了變異,需要對(duì)該患者進(jìn)行進(jìn)一步檢查,若某服用甲藥的患者已經(jīng)治療了26天還未痊愈,請(qǐng)結(jié)合(2)中甲藥的數(shù)據(jù),判斷是否應(yīng)該對(duì)該患者進(jìn)行進(jìn)一步檢查?
參考公式:s,
參考數(shù)據(jù):48.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正六棱錐中,底面邊長(zhǎng)和側(cè)棱分別是2和4,,分別是和的中點(diǎn),給出下面三個(gè)判斷:(1)和所成的角的余弦值為;(2)和底面所成的角是;(3)平面平面;其中判斷正確的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著生活水平的逐步提高,人們對(duì)文娛活動(dòng)的需求與日俱增,其中觀看電視就是一種老少皆宜的娛樂(lè)活動(dòng).但是我們?cè)谟^看電視娛樂(lè)身心的同時(shí),也要注意把握好觀看時(shí)間,近期研究顯示,一項(xiàng)久坐的生活指標(biāo)——看電視時(shí)間,是導(dǎo)致視力下降的重要因素,即看電視時(shí)間越長(zhǎng),視力下降的風(fēng)險(xiǎn)越大.研究者在某小區(qū)統(tǒng)計(jì)了每天看電視時(shí)間(單位:小時(shí))與視力下降人數(shù)的相關(guān)數(shù)據(jù)如下:
編號(hào) | 1 | 2 | 3 | 4 | 5 |
1 | 1.5 | 2 | 2.5 | 3 | |
12 | 16 | 22 | 24 | 26 |
(1)請(qǐng)根據(jù)上面的數(shù)據(jù)求關(guān)于的線性回歸方程
(2)我們用(1)問(wèn)求出的線性回歸方程的估計(jì)回歸方程,由于隨機(jī)誤差,所以是的估計(jì)值,成為點(diǎn)(,)的殘差.
①填寫(xiě)下面的殘差表,并繪制殘差圖;
編號(hào) | 1 | 2 | 3 | 4 | 5 |
1 | 1.5 | 2 | 2.5 | 3 | |
12 | 16 | 22 | 24 | 26 | |
②若殘差圖所在帶狀區(qū)域?qū)挾炔怀^(guò)4,我們則認(rèn)為該模型擬合精度比較高,回歸方程的預(yù)報(bào)精度較高,試根據(jù)①繪制的殘差圖分折該模型擬合精度是否比較高?
附:回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸,長(zhǎng)度單位相同,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線過(guò)點(diǎn),傾斜角為.
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,寫(xiě)出直線的參數(shù)方程的標(biāo)準(zhǔn)形式;
(2)已知直線交曲線于兩點(diǎn),求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com