定義:稱為n個(gè)正數(shù)x1,x2,…,xn的“平均倒數(shù)”,若正項(xiàng)數(shù)列{cn}的前n項(xiàng)的“平均倒數(shù)”為,則數(shù)列{cn}的通項(xiàng)公式為cn=________.
4n-1
由已知可得,數(shù)列{cn}的前n項(xiàng)和Sn=n(2n+1),所以數(shù)列{cn}為等差數(shù)列,首項(xiàng)c1=S1=3,c2=S2-S1=10-3=7,故公差d=c2-c1=7-3=4,得數(shù)列的通項(xiàng)公式為cn=c1+(n-1)×4=4n-1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分16分)
設(shè)數(shù)列的前項(xiàng)和為.若對(duì)任意的正整數(shù),總存在正整數(shù),使得,則稱是“數(shù)列”.
(1)若數(shù)列的前項(xiàng)和為,證明:是“數(shù)列”.
(2)設(shè)是等差數(shù)列,其首項(xiàng),公差,若是“數(shù)列”,求的值;
(3)證明:對(duì)任意的等差數(shù)列,總存在兩個(gè)“數(shù)列” ,使得成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列{an}滿足a1+2a2+22a3+…+2n-1an=4n.
(1)求通項(xiàng)an;
(2)求數(shù)列{an}的前n項(xiàng)和 Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)
(1)若,求及數(shù)列的通項(xiàng)公式;
(2)若,問:是否存在實(shí)數(shù)使得對(duì)所有成立?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等比數(shù)列中,,則數(shù)列的前8項(xiàng)和等于
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S4=40,Sn=210,Sn-4=130,則n=(  )
A.12B.14C.16D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

公比不為1的等比數(shù)列{an}的前n項(xiàng)和為Sn,且-3a1,-a2,a3成等差數(shù)列,若a1=1,則S4=(  )
A.-20B.0C.7D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一函數(shù)y=f(x)的圖象在給定的下列圖象中,并且對(duì)任意an∈(0,1),由關(guān)系式an+1=f(an)得到的數(shù)列{an}滿足an+1>an(n∈N*),則該函數(shù)的圖象是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,一條螺旋線是用以下方法畫成:是邊長為1的正三角形,曲線是分別以為圓心,為半徑畫的弧,曲線記為螺旋線旋第一圈.然后又以為圓心為半徑畫弧,這樣畫到第圈,則所得螺旋線的長度為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案