已知A(-1,0),B(2,1),C(1,-1).若將坐標(biāo)平面沿x軸折成直二面角,則折后∠BAC的余弦值為   
【答案】分析:先畫出折疊前與折疊后的圖形,再根據(jù)直二面角,求出三角形的三邊長,運(yùn)用余弦定理求解即可.
解答:解:如圖

過C作CM⊥x軸,垂足為M,過B作BN⊥x軸,垂足為N,連接BM,
∵B(2,1),C(1,-1),
∴BN=1,MN=1.BM=
∵直二面角,∴CM⊥平面ABM,又BM?平面ABM,
∴BM⊥CM,BM=,CM=1
∴BC=
AB=,AC=,
在△ABC中,根據(jù)余弦定理cos∠BAC==
點(diǎn)評:本題考查面面垂直的性質(zhì)及余弦定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A(-1,0),B(1,0),點(diǎn)C(x,y)滿足:
(x-1)2+y2
|x-4|
=
1
2
,則|AC|+|BC|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>1,0<x<1,試比較|loga(1-x)|與|loga(1+x)|的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(-1,0)B(1,0),點(diǎn)P滿足
PA
PB
=0,則
|
PA
+
PB
|
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)T是矩陣
ac
b0
所對應(yīng)的變換,已知A(1,0),且T(A)=P.設(shè)b>0,當(dāng)△POA的面積為
3
,∠POA=
π
3
,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(-1,0),B(0,2),C(-3,1),且
AB
AD
=5,
AD
2=10.
(1)求D點(diǎn)的坐標(biāo);
(2)若D的橫坐標(biāo)小于零,試用
AB
、
AD
表示
AC

查看答案和解析>>

同步練習(xí)冊答案