已知P為拋物線y=x2上的動點,點P在x軸上的射影為M,點A的坐標是(2,0),則|PA|+|PM|的最小值是________.
科目:高中數(shù)學(xué) 來源: 題型:
原創(chuàng))已知函數(shù)。
(1)用定義證明函數(shù)在其定義域上為增函數(shù);
(2)若,解關(guān)于的不等式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線的中心在原點,焦點F1、F2在坐標軸上,離心率為,且過點(4,-).
(1)求雙曲線的方程;
(2)若點M(3,m)在雙曲線上,求證:·=0;
(3)在(2)的條件下,求△F1MF2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知點N(1,2),過點N的直線交雙曲線x2-=1于A,B兩點,且
(1)求直線AB的方程;
(2)若過N的另一條直線交雙曲線于C,D兩點,且=0,那么A,B,C,D四點是否共圓?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
將兩個頂點在拋物線y2=2px(p>0)上,另一個頂點是此拋物線焦點的正三角形個數(shù)記為n,則( )
A.n=0 B.n=1
C.n=2 D.n≥3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知點C(1,0),點A、B是⊙O:x2+y2=9上任意兩個不同的點,且滿足=0,設(shè)P為弦AB的中點.
(1)求點P的軌跡T的方程;
(2)試探究在軌跡T上是否存在這樣的點:它到直線x=-1的距離恰好等于到點C的距離?若存在,求出這樣的點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2014·鶴壁淇縣檢測)如圖所示,已知C為圓(x+)2+y2=4的圓心,點A(,0),P是圓上的動點,點Q在圓的半徑CP所在直線上,且當點P在圓上運動時,求點Q的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,四棱錐P-ABCD中,PA⊥平面ABCD,PB與底面所成的角為45°,底面ABCD為直角梯形,∠ABC=∠BAD=90°,PA=BC=AD=1.
(1)求證:平面PAC⊥平面PCD;
(2)在棱PD上是否存在一點E,使CE∥平面PAB?若存在,請確定E點的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com