17.在30°的二面角的一個平面內(nèi)有一點,他到另一個平面內(nèi)的距離是8,這點到棱的距離等于16.

分析 如圖,PO是它到另一個面β的距離,PH它到棱的距離,得出∠PHO為二面角α-l-β的平面角.在RT△PHO中求解即可.

解答 解:如圖所示:
P為二面角α-l-β的一個面α內(nèi)有一點.
PO是它到另一個面β的距離,PO=8.PH它到棱的距離.
∵PO⊥β,∴PO⊥l,又PH⊥l,∴l(xiāng)⊥面POH,得出l⊥OH,
所以∠PHO為二面角α-l-β的平面角,∠PHO=30°.
在RT△PHO中,PH=$\frac{8}{\frac{1}{2}}$=16
故答案為:16.

點評 本題考查二面角的定義,空間距離求解.考查空間想象能力,推理論證,運算求解能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,$\overrightarrow{AE}$=$\frac{1}{5}$$\overrightarrow{AB}$,EF∥BC,EF交AC于F,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,則$\overrightarrow{BF}$可以用$\overrightarrow{a}$,$\overrightarrow$表示的形式是$\overrightarrow{BF}$=$-\overrightarrow{a}$$+\frac{1}{5}$$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}滿足:a1=$\frac{3}{2}$,且an=$\frac{{3n{a_{n-1}}}}{{2{a_{n-1}}+n-1}}$(n≥2,n∈N*).證明:{1-$\frac{n}{{a}_{n}}$}為一個等比數(shù)列,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列函數(shù)完全相同的是( 。
A.f(x)=x,g(x)=x2B.f(x)=x,g(x)=$\root{3}{x^3}$C.f(x)=x,g(x)=$\sqrt{x}$D.f(x)=$\sqrt{x^2}g(x)=\sqrt{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,?ABCD中,∠DAB=60°,AB=2AD=2,M為CD的中點,沿BM將△CBM折起,使得平面AMC⊥平面BMC,O為線段BM的中點.
(1)求證:CO⊥平面ABMD;
(2)求點D到平面AMC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,AB是⊙O的直徑,點C是⊙O上一點,AD⊥DC于D,且AC平分∠DAB,延長DC交AB的延長線于點P.
(1)求證:PC2=PA•PB;
(2)若3AC=4BC,⊙O的直徑為7,求線段PC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖在三棱錐A-BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜邊,且AD=$\sqrt{3}$,BD=CD=1,另一個側(cè)面是正三角形
(1)求證:AD⊥BC;
(2)求二面角B-AC-D的余弦值;
(3)點E在直線AC上,當(dāng)直線ED與平面BCD成30°角若時,求點C到平面BDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={x|0<x<4},B={x|x<a}若A⊆B,則實數(shù)a的取值范圍是( 。
A.{a|a≤0}B.{a|0<a≤4}C.{a|a≥4}D.{a|0<a<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C的方程為x2+$\frac{{y}^{2}}{4}$=1,定點N(0,1),過圓M:x2+y2=$\frac{4}{5}$上任意一點作圓M的一條切線交橢圓C于A,B兩點.
(1)求證:$\overrightarrow{OA}•\overrightarrow{OB}=0$;
(2)若點P,Q在橢圓C上,直線PQ與x軸平行,直線PN交橢圓于另一個不同的點S,問:直線QS是否經(jīng)過一個定點?若是,求出這個定點的坐標(biāo);若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案