已知拋物線y2=2px的焦點(diǎn)F到其準(zhǔn)線的距離是8,拋物線的準(zhǔn)線與x的交點(diǎn)為K,點(diǎn)A在拋物線上且|AK|=
2
|AF|
,則△AFK的面積為(  )
分析:由拋物線的性質(zhì)可求p,進(jìn)而可求拋物線的方程,設(shè)A(x,y),K(-4,0),F(xiàn)(4,0),由|AK|=
2
|AF|
,及點(diǎn)A在拋物線上,利用兩點(diǎn)間的距離公式可得關(guān)于x,y的方程,解方程可求A 的坐標(biāo),進(jìn)而可求△AFK的面積
解答:解:由題意可得,p=8
∴拋物線的方程為y2=16x
設(shè)A(x,y),K(-4,0),F(xiàn)(4,0)
∵|AK|=
2
|AF|
,
(x+4)2+y2
=
2
(x-4)2+y2

整理可得,x2+y2-24x+16=0
∵y2=16x
∴x2-8x+16=0
∴x=4,|y|=8
S△AFK=
1
2
FK•|y|
=
1
2
×8×8
=32
故選A
點(diǎn)評(píng):本題主要考查了拋物線的性質(zhì)的簡(jiǎn)單應(yīng)用及基本的運(yùn)算能力,試題比較容易
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0).過動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.
(1)求a的取值范圍;
(2)若線段AB的垂直平分線交x軸于點(diǎn)N,求△NAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l.
(1)求拋物線上任意一點(diǎn)Q到定點(diǎn)N(2p,0)的最近距離;
(2)過點(diǎn)F作一直線與拋物線相交于A,B兩點(diǎn),并在準(zhǔn)線l上任取一點(diǎn)M,當(dāng)M不在x軸上時(shí),證明:
kMA+kMBkMF
是一個(gè)定值,并求出這個(gè)值.(其中kMA,kMB,kMF分別表示直線MA,MB,MF的斜率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0).過動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•聊城一模)已知拋物線y2=2px(p>0),過點(diǎn)M(2p,0)的直線與拋物線相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0),M(2p,0),A、B是拋物線上的兩點(diǎn).求證:直線AB經(jīng)過點(diǎn)M的充要條件是OA⊥OB,其中O是坐標(biāo)原點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案