如圖,已知點A(0,-3),動點P滿足|PA|=2|PO|,其中O為坐標原點.
(Ⅰ)求動點P的軌跡方程.
(Ⅱ)記(Ⅰ)中所得的曲線為C.過原點O作兩條直線l1:y=k1x,l2:y=k2x分別交曲線C于點E(x1,y1)、F(x2,y2)、G(x3,y3)、H(x4,y4)(其中y2>0,y4>0).求證:
(III)對于(Ⅱ)中的E、F、G、H,設(shè)EH交x軸于點Q,GF交x軸于點R.求證:|OQ|=|OR|.(證明過程不考慮EH或GF垂直于x軸的情形)

【答案】分析:(1)設(shè)點P的坐標為(x,y),進而表示出|PA|和|PO|,根據(jù)|PA|=2|PO|,求的點P的軌跡方程.
(2)將直線EF和GH的方程分別代入圓C方程,利用韋達定理分別求得交點橫坐標之和與之積,進而代入,證明原式.
(3)設(shè)點Q(q,0),點Q(r,0),由E、Q、H三點共線求得q的表達式,根據(jù)F、R、G三點共線求得r的表達式,進而根據(jù)(2)中的
整理得,進而可知q+r=0,所以|q|=|r|,即|OQ|=|OR|.
解答:解:(Ⅰ)設(shè)點P(x,y),依題意可得
整理得x2+y2-2y-3=0
故動點P的軌跡方程為x2+y2-2y-3=0.
(Ⅱ)將直線EF的方程y=k1x代入圓C方程
整理得(k12+1)x2-2k1x-3=0
根據(jù)根與系數(shù)的關(guān)系得,
將直線GH的方程y=k2x代入圓C方程,
同理可得,
由①、②可得,所以結(jié)論成立.
(Ⅲ)設(shè)點Q(q,0),點Q(r,0),由E、Q、H三點共線
,解得
由F、R、G三點共線
同理可得
變形得
,
從而q+r=0,所以|q|=|r|,即|OQ|=|OR|.
點評:本題主要考查了圓方程得綜合應(yīng)用.涉及直線與圓的關(guān)系常需要把直線方程與圓方程聯(lián)立,利用韋達定理來解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點A(0,-3),動點P滿足|PA|=2|PO|,其中O為坐標原點.
(Ⅰ)求動點P的軌跡方程.
(Ⅱ)記(Ⅰ)中所得的曲線為C.過原點O作兩條直線l1:y=k1x,l2:y=k2x分別交曲線C于點E(x1,y1)、F(x2,y2)、G(x3,y3)、H(x4,y4)(其中y2>0,y4>0).求證:
k1x1x2
x1+x2
=
k2x3x4
x3+x4
;
(III)對于(Ⅱ)中的E、F、G、H,設(shè)EH交x軸于點Q,GF交x軸于點R.求證:|OQ|=|OR|.(證明過程不考慮EH或GF垂直于x軸的情形)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知點A(0,2)和拋物線y2=x+4上兩點B、C,使得AB⊥BC,求點C的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點A(0,2)和拋物線y2=x+4上兩點B、C,使得AB⊥BC,求點C的縱坐標的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年廣東省佛山市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖,已知點A(0,-3),動點P滿足|PA|=2|PO|,其中O為坐標原點.
(Ⅰ)求動點P的軌跡方程.
(Ⅱ)記(Ⅰ)中所得的曲線為C.過原點O作兩條直線l1:y=k1x,l2:y=k2x分別交曲線C于點E(x1,y1)、F(x2,y2)、G(x3,y3)、H(x4,y4)(其中y2>0,y4>0).求證:;
(III)對于(Ⅱ)中的E、F、G、H,設(shè)EH交x軸于點Q,GF交x軸于點R.求證:|OQ|=|OR|.(證明過程不考慮EH或GF垂直于x軸的情形)

查看答案和解析>>

同步練習(xí)冊答案