A. | {x|x>-$\frac{5}{4}$且x≠2} | B. | {x|x>-$\frac{5}{4}$} | C. | {x|x<-$\frac{5}{4}$且x≠-5} | D. | {x|x<-$\frac{5}{4}$} |
分析 由已知向量的夾角為銳角,得到數量間大于0,并且不共線,由此得到所求.
解答 解:因為向量$\overrightarrow{a}$=(2,x+1),$\overrightarrow$=(x+2,6),又$\overrightarrow{a}$,$\overrightarrow$的夾角為銳角,
所以$\overrightarrow{a}•\overrightarrow$=2(x+2)+6(x+1)=8x+10>0,得到x>$-\frac{5}{4}$,
又$\overrightarrow{a},\overrightarrow$不共線,所以2×6-(x+1)(x+2)≠0,則x≠-5且x≠2,
所以實數x的取值范圍為{x|x>-$\frac{5}{4}$且x≠2};
故選:A.
點評 本題開始了向量的數量間公式的運用;由數量間公式得到關于x的不等式;特別注意數量間大于0與夾角為銳角不等價.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1+\sqrt{3}}{4}i$ | B. | $\frac{1+\sqrt{3}}{4}$ | C. | $\frac{\sqrt{3}-1}{4}i$ | D. | $\frac{\sqrt{3}-1}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com