分析 (1)消去參數(shù),可得直線l的直角坐標(biāo)方程;由ρ=4cosθ得:x2+y2=4x,可得曲線C的參數(shù)方程;
(2)點M(2+2cosα,2sinα)到直線x-$\sqrt{3}$y+3=0的距離為d.d=$\frac{|2+2cosα-2\sqrt{3}sinα+3|}{\sqrt{1+3}}$=$\frac{1}{2}$[5-4sin(α-$\frac{π}{6}$)],即可求曲線C上的動點M到直線l的距離的范圍.
解答 解:(1)直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-3+tcos\frac{π}{6}}\\{y=tsin\frac{π}{6}}\end{array}\right.$(t為參數(shù)),
消去參數(shù),得到直線x+3=$\sqrt{3}$y,即:x-$\sqrt{3}$y+3=0.
由ρ=4cosθ得:x2+y2=4x,即:(x-2)2+y2=4
∵0$≤θ≤\frac{π}{2}$,∴y≥0
故C的參數(shù)方程為:$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$(α為參數(shù),0≤α≤π);
(2)設(shè)點M(2+2cosα,2sinα)到直線x-$\sqrt{3}$y+3=0的距離為d.
d=$\frac{|2+2cosα-2\sqrt{3}sinα+3|}{\sqrt{1+3}}$=$\frac{1}{2}$[5-4sin(α-$\frac{π}{6}$)],
∵0≤α≤π,
∴-$\frac{π}{6}$≤α-$\frac{π}{6}$≤$\frac{5π}{6}$,
∴-$\frac{1}{2}$≤sin(α-$\frac{π}{6}$)≤1,
∴$\frac{1}{2}$≤d≤$\frac{7}{2}$,
即點M到直線l的距離的范圍是[$\frac{1}{2}$,$\frac{7}{2}$].
點評 本題考查極坐標(biāo)、參數(shù)方程、普通方程的轉(zhuǎn)化,考查參數(shù)方程的運用,考查點到直線距離公式的運用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 關(guān)于直線x=$\frac{π}{12}$對稱 | B. | 關(guān)于直線x=$\frac{5π}{12}$對稱 | ||
C. | 關(guān)于點($\frac{π}{12}$,0)對稱 | D. | 關(guān)于點($\frac{5π}{12}$,0)對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,+∞) | B. | (-1,+∞) | C. | (0,+∞) | D. | [0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-3,1] | B. | (-∞,1] | C. | [1,+∞) | D. | [-1,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,1) | C. | (-1,1) | D. | (-∞,1)∪(1,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com