18.在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,AB=2CB=2,∠ABC=60°,在梯形ACEF中,EF∥AC,且AC=2EF=2EC,EC⊥平面ABCD.
(Ⅰ)求證:AC⊥BE;
(Ⅱ)求BF與平面ACEF所成的角的正切.

分析 (Ⅰ)由余弦定理和勾股定理求出BC⊥AC,由EC⊥平面ABCD得出AC⊥EC,從而證明AC⊥平面BCE,AC⊥BE;
(Ⅱ)由BC⊥AC,BC⊥EC,得出BC⊥平面ACEF,BC⊥CF,得出∠BFC為BF與平面ACEF所成的角;
求出它的正切值即可.

解答 解:(Ⅰ)證明:在△ABC中,
AC2=AB2+BC2-2AB•BCcos60°=3,
∴AB2=AC2+BC2
∴∠ACB=90°,
∴BC⊥AC;     …(2分)
又∵EC⊥平面ABCD,BC?平面ABCD,
∴AC⊥EC;   …(4分)
∵BC∩EC=C,
∴AC⊥平面BCE,
由BE?平面BCE,
∴AC⊥BE;        …(6分)
(Ⅱ)由(Ⅰ)得,
EF=EC=$\frac{\sqrt{3}}{2}$,BC⊥AC,BC⊥EC,且AC∩EC=C,

∴BC⊥平面ACEF,
又CF?平面ACEF,
∴BC⊥CF,
∴∠BFC為BF與平面ACEF所成的角;…(9分)
又CF=$\sqrt{{(\frac{\sqrt{3}}{2})}^{2}{+(\frac{\sqrt{3}}{2})}^{2}}$=$\frac{\sqrt{6}}{2}$,
∴tan∠BFC=$\frac{BC}{FC}$=$\frac{\sqrt{6}}{3}$.
即BF與平面ACEF所成的角的正切為$\frac{\sqrt{6}}{3}$.…(12分)

點評 本題主要考查了空間中的垂直關(guān)系的應用問題,也考查了直線與平面所成角的應用問題,是綜合性問題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

17.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x≥-3}\\{y≤2}\\{x-y-1≤0}\end{array}\right.$,則$\frac{y-1}{x-4}$的最大值為$\frac{5}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x+1)=2x-1,則f(x)的解析式為( 。
A.f(x)=3-2xB.f(x)=2x-3C.f(x)=3x-2D.f(x)=3x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若函數(shù)f(x)=|x+$\frac{1}{x}|-|x-\frac{1}{x}$|-k(k為常數(shù))有四個零點,則這四個零點之和為( 。
A.-2kB.0C.2kD.4k

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在平面直角坐標系xOy中,以坐標原點O為極點,x軸的非負半軸為極軸,建立極坐標系.曲線C的極坐標方程是ρ=4cosθ(0$≤θ≤\frac{π}{2}$),直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-3+tcos\frac{π}{6}}\\{y=tsin\frac{π}{6}}\end{array}\right.$(t為參數(shù)).
(1)求直線l的直角坐標方程和曲線C的參數(shù)方程;
(2)求曲線C上的動點M到直線l的距離的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn.數(shù)列{an}中的項按下列規(guī)律過程構(gòu)成無窮多個行列式:|$\begin{array}{l}{a_1}{a_2}{a_3}\\{a_4}{a_5}{a_6}\\{a_7}{a_8}{a_9}\end{array}|,|\begin{array}{l}{a_7}{a_8}{a_9}\\{a_{10}}{a_{11}}{a_{12}}\\{a_{13}}{a_{14}}{a_{15}}\end{array}|,|\begin{array}{l}{a_{13}}{a_{14}}{a_{15}}\\{a_{16}}{a_{17}}{a_{18}}\\{a_{19}}{a_{20}}{a_{21}}\end{array}|…,記{A_i}為{a_i}$(i=1,2,3…)的代數(shù)余子式.
(1)若Sn=2n2+n,求A1,A4,A6,A9;
(2)若數(shù)列{an}為等差數(shù)列,A3=-27$,\;{a_1}=5\;,\;{b_n}=\frac{a_n}{2^n}$,求數(shù)列{bn}的前n項和Tn;
(3)數(shù)列{an}為公差不為0的等差數(shù)列,Ai=λ(Ai-k+Ai+k),其中i,i-k,i+k,k∈N*.試研究λ的所有可能值,并指出取到每個值時的條件(注:本小題將根據(jù)考生研究的情況分層評分).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.f(x)是定義在D上的函數(shù),若存在區(qū)間[m,n]⊆D,使函數(shù)f(x)在[m,n]上的值域恰為[km,kn],則稱區(qū)間[m,n]為函數(shù)f(x)的k倍區(qū)間.若區(qū)間[m,n]為函數(shù)f(x)=$\frac{({a}^{2}+a)x-2}{{a}^{2}x}$(a≠0)的2倍區(qū)間,則n-m的最大值為$\frac{2\sqrt{15}}{15}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{1-m+lnx}{x}$,m∈R.
(1)求f(x)的極值;
(2)當m=0時,若不等式f(x)≥$\frac{k}{x+1}$對x∈[1,+∞)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知二次函數(shù)f(x)=ax2+bx+1,若f(-1)=1且f(x)<2恒成立,則實數(shù)a的取值范圍是(-4,0].

查看答案和解析>>

同步練習冊答案