【題目】已知橢圓 是坐標原點, 分別為其左右焦點, , 是橢圓上一點, 的最大值為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓交于兩點,且

(i)求證: 為定值;

(ii)求面積的取值范圍.

【答案】(1)(2)見解析

【解析】試題分析:(1)由橢圓對稱性可得M為短軸端點B時取最大值,因此根據(jù)直角三角形可得,(2)(i)解幾中證明題一般方法為以算代證,先由直線方程與橢圓方程聯(lián)立,解出坐標(用直線斜率表示),代入可得定值,最后驗證斜率不存在的情況也滿足(ii)因為,所以積為,再將(i)坐標(用直線斜率表示)代入,得關(guān)于直線斜率的一元函數(shù)關(guān)系,利用基本不等式求最值,確定函數(shù)取值范圍.

試題解析:(1)由題意得,得橢圓方程為:

(2)

i)當斜率都存在且不為0時,設(shè),

同理得,

斜率一個為0,一個不存在時,得

綜上得,得證。

ii)斜率都存在且不為0時,

所以

斜率一個為0,一個不存在時,

綜上得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列{an}是等差數(shù)列,首項a1>0,a2003+a2004>0,a2003 . a2004<0,則使前n項和Sn>0成立的最大自然數(shù)n是(
A.4005
B.4006
C.4007
D.4008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究型學(xué)習(xí)小組調(diào)查研究中學(xué)生使用智能手機對學(xué)習(xí)的影響.部分統(tǒng)計數(shù)據(jù)如下表:

參考數(shù)據(jù):

參考公式: ,其中

(Ⅰ)試根據(jù)以上數(shù)據(jù),運用獨立性檢驗思想,指出有多大把握認為中學(xué)生使用智能手機對學(xué)習(xí)有影響?

()研究小組將該樣本中使用智能手機且成績優(yōu)秀的4位同學(xué)記為組,不使用智能手機且成績優(yōu)秀的8位同學(xué)記為組,計劃從組推選的2人和組推選的3人中,隨機挑選兩人在學(xué)校升旗儀式上作國旗下講話分享學(xué)習(xí)經(jīng)驗.求挑選的兩人恰好分別來自、兩組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念.記交通指數(shù)為,其范圍為分別有5個級別:暢通;基本暢通輕度擁堵;中度擁堵嚴重擁堵早高峰時段),從貴陽市交通指揮中心隨機選取了二環(huán)以內(nèi)50個交通路段,依據(jù)交通指數(shù)數(shù)據(jù)繪制的直方圖如圖所示:

(1)據(jù)此直方圖估算交通指數(shù)時的中位數(shù)和平均數(shù);

(2)據(jù)此直方圖求出早高峰二環(huán)以內(nèi)的3個路段至少有兩個嚴重擁堵的概率是多少?

(3)某人上班路上所用時間若暢通時為20分鐘,基本暢通為30分鐘,輕度擁堵為35分鐘,中度擁堵為45分鐘,嚴重擁堵為60分鐘,求此人所用時間的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, 邊上的中線長為3,且 .

(1)求的值;

(2)求外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)=x2﹣2x﹣1.
(1)求f(x)的函數(shù)解析式,并用分段函數(shù)的形式給出;
(2)作出函數(shù)f(x)的簡圖;
(3)寫出函數(shù)f(x)的單調(diào)區(qū)間及最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家商場對同一種商品開展促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:

甲商場:顧客轉(zhuǎn)動如圖所示圓盤,當指針指向陰影部分(圖中兩個陰影部分均為扇形,且每個扇形圓心角均為,邊界忽略不計)即為中獎·

乙商場:從裝有2個白球、2個藍球和2個紅球的盒子中一次性摸出1球(這些球除顏色外完全相同),它是紅球的概率是,若從盒子中一次性摸出2球,且摸到的是2個相同顏色的球,即為中獎.

(Ⅰ)求實數(shù)的值;

(Ⅱ)試問:購買該商品的顧客在哪家商場中獎的可能性大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的焦點在軸上,橢圓的左頂點為,斜率為的直線交橢圓, 兩點,點在橢圓上, ,直線軸于點.

(Ⅰ)當點為橢圓的上頂點, 的面積為時,求橢圓的離心率;

(Ⅱ)當 時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為大力提倡“厲行節(jié)約,反對浪費”,某市通過隨機詢問100名性別不同的居民是否能做到“光盤”行動,得到如下的列聯(lián)表:( )

做不到“光盤”

能做到“光盤”

45

10

30

15

附:

P(K2k)

0.10

0.05

0.025

k

2.706

3.841

5.024

參照附表,得到的正確結(jié)論是

A在犯錯誤的概率不超過l%的前提下,認為“該市居民能否做到‘光盤’與性別有關(guān)”

B在犯錯誤的概率不超過l%的前提下,認為“該市居民能否做到‘光盤’與性別無關(guān)”

C有90%以上的把握認為“該市居民能否做到‘光盤’與性別有關(guān)”

D有90%以上的把握認為“該市居民能否做到‘光盤’與性別無關(guān)”

查看答案和解析>>

同步練習(xí)冊答案