【題目】

已知函數(shù),(

)討論函數(shù)的單調(diào)區(qū)間;

)設(shè)函數(shù)在區(qū)間內(nèi)是減函數(shù),求的取值范圍.

【答案】解:(1

…………………………………………………………………1

當(dāng)時(shí),即時(shí),,

上遞增;…………………………………………………3

當(dāng)時(shí),即時(shí),,

求得兩根為…………………………………5

上遞增;

上遞減,………………………………6

的單調(diào)遞增區(qū)間是:當(dāng)時(shí),

當(dāng)時(shí),

的單調(diào)遞減區(qū)間是:

當(dāng)時(shí),………………7

2)(法一)由(1)知在區(qū)間上遞減,

只要

解得:

………9

……………………………………………………………12

……………………………………………………14

【解析】

1;(2

1求導(dǎo):

當(dāng)時(shí),,上遞增

當(dāng),求得兩根為

遞增,遞減,遞增

2,且解得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA=PD,∠DAB=60°.

(1)證明:ADPB.

(2)若PB=AB=PA=2,求三棱錐P-BCD的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知高中學(xué)生的數(shù)學(xué)成績(jī)與物理成績(jī)具有線性相關(guān)關(guān)系,在一次考試中某班7名學(xué)生的數(shù)學(xué)成績(jī)與物理成績(jī)?nèi)缦卤恚?/span>

數(shù)學(xué)成績(jī)

88

83

117

92

108

100

112

物理成績(jī)

94

91

108

96

104

101

106

1)求這7名學(xué)生的數(shù)學(xué)成績(jī)的極差和物理成績(jī)的平均數(shù);

2)求物理成績(jī)對(duì)數(shù)學(xué)成績(jī)的線性回歸方程;若某位學(xué)生的數(shù)學(xué)成績(jī)?yōu)?/span>110分,試預(yù)測(cè)他的物理成績(jī)是多少?

下列公式與數(shù)據(jù)可供參考:

用最小二乘法求線性回歸方程的系數(shù)公式:,;

,

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種新產(chǎn)品投放市場(chǎng)一段時(shí)間后,經(jīng)過調(diào)研獲得了時(shí)間(天數(shù))與銷售單價(jià)(元)的一組數(shù)據(jù),且做了一定的數(shù)據(jù)處理(如表),并作出了散點(diǎn)圖(如圖).

1.63

37.8

0.89

5.15

0.92

18.40

表中.

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)更適合作價(jià)格關(guān)于時(shí)間的回歸方程類型?(不必說明理由)

2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程.

3)若該產(chǎn)品的日銷售量(件)與時(shí)間的函數(shù)關(guān)系為,求該產(chǎn)品投放市場(chǎng)第幾天的銷售額最高?最高為多少元?

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓上一點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,為其右焦點(diǎn),若,設(shè),且,則該橢圓的離心率的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線L:為參數(shù)),曲線為參數(shù))

(Ⅰ)設(shè)相交于兩點(diǎn),求;

(Ⅱ)若把曲線上各點(diǎn)的橫坐標(biāo)壓縮為原來的倍,縱坐標(biāo)壓縮為原來的倍,得到曲線,設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知從地到地有兩條道路可以到達(dá),走道路①準(zhǔn)點(diǎn)到達(dá)的概率為,不準(zhǔn)點(diǎn)到達(dá)的概率為;走道路②準(zhǔn)點(diǎn)到達(dá)的概率為,不準(zhǔn)點(diǎn)到達(dá)的概率為.若甲乙兩車走道路①,丙車由于其他原因走道路②,且三輛車是否準(zhǔn)點(diǎn)到達(dá)相互之間沒有影響.

1)若三輛車中恰有一輛車沒有準(zhǔn)點(diǎn)到達(dá)的概率為,求走道路②準(zhǔn)點(diǎn)到達(dá)的概率;

2)在(1)的條件下,求三輛車中準(zhǔn)點(diǎn)到達(dá)車輛的輛數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且存在不同的實(shí)數(shù)x1,x2x3,使得fx1=fx2=fx3),則x1x2x3的取值范圍是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

(1)求六月份這種酸奶一天的需求量不超過300瓶的概率,;

(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出的所有可能值,并估計(jì)大于零的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案