設實數(shù)a,b滿足
2a-b+1≥0
2a+b-4≥0
2a≤3
,則4a2+b2的最大值是( 。
A、25
B、50
C、1
D、
25
3
分析:本題考查的知識點是簡單線性規(guī)劃的應用,我們要先畫出滿足約束條件
2a-b+1≥0
2a+b-4≥0
2a≤3
的平面區(qū)域,然后分析平面區(qū)域里各個角點,然后將其代入4a2+b2中,求出4a2+b2的最大值
解答:精英家教網(wǎng)解:滿足約束條件
2a-b+1≥0
2a+b-4≥0
2a≤3
的平面區(qū)域如下圖示:
由圖可知,當a=
3
2
,b=4時,
4a2+b2有最大值25
故選A
點評:平面區(qū)域的最值問題是線性規(guī)劃問題中一類重要題型,在解題時,關鍵是正確地畫出平面區(qū)域,分析表達式的幾何意義,然后結合數(shù)形結合的思想,分析圖形,找出滿足條件的點的坐標,即可求出答案.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•福建模擬)(1)選修4-2:矩陣與變換
已知向量
1
-1
在矩陣M=
1m
01
變換下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲線y2-x+y=0在矩陣M-1對應的線性變換作用下得到的曲線方程.
(2)選修4-4:極坐標與參數(shù)方程
在直角坐標平面內(nèi),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知點M的極坐標為(4
2
,
π
4
)
,曲線C的參數(shù)方程為
x=1+
2
cosα
y=
2
sinα
(α為參數(shù)).
(Ⅰ)求直線OM的直角坐標方程;
(Ⅱ)求點M到曲線C上的點的距離的最小值.
(3)選修4-5:不等式選講
設實數(shù)a,b滿足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求a的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•福建模擬)(1)選修4-2:矩陣與變換
已知向量
1
-1
在矩陣M=
1m
01
變換下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲線y2-x+y=0在矩陣M-1對應的線性變換作用下得到的曲線方程.
(2)選修4-4:極坐標與參數(shù)方程
在直角坐標平面內(nèi),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知點M的極坐標為(4
2
,
π
4
),曲線C的參數(shù)方程為
x=1+
2
cosα
y=
2
sinα
(α為參數(shù)).
(Ⅰ)求直線OM的直角坐標方程;
(Ⅱ)求點M到曲線C上的點的距離的最小值.
(3)選修4-5:不等式選講
設實數(shù)a、b滿足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求x的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三(下)4月質(zhì)量檢查數(shù)學試卷2(文科)(解析版) 題型:解答題

(1)選修4-2:矩陣與變換
已知向量在矩陣M=變換下得到的向量是
(Ⅰ)求m的值;
(Ⅱ)求曲線y2-x+y=0在矩陣M-1對應的線性變換作用下得到的曲線方程.
(2)選修4-4:極坐標與參數(shù)方程
在直角坐標平面內(nèi),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知點M的極坐標為(4,),曲線C的參數(shù)方程為(α為參數(shù)).
(Ⅰ)求直線OM的直角坐標方程;
(Ⅱ)求點M到曲線C上的點的距離的最小值.
(3)選修4-5:不等式選講
設實數(shù)a、b滿足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求x的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三(下)4月質(zhì)量檢查數(shù)學試卷(理科)(解析版) 題型:解答題

(1)選修4-2:矩陣與變換
已知向量在矩陣變換下得到的向量是
(Ⅰ)求m的值;
(Ⅱ)求曲線y2-x+y=0在矩陣M-1對應的線性變換作用下得到的曲線方程.
(2)選修4-4:極坐標與參數(shù)方程
在直角坐標平面內(nèi),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知點M的極坐標為,曲線C的參數(shù)方程為(α為參數(shù)).
(Ⅰ)求直線OM的直角坐標方程;
(Ⅱ)求點M到曲線C上的點的距離的最小值.
(3)選修4-5:不等式選講
設實數(shù)a,b滿足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求a的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

同步練習冊答案