已知圓的極坐標方程為ρ=cosθ-sinθ,則該圓的面積為
 
分析:首先將曲線極坐標方程化為普通方程,求出圓的半徑后即可求解.
解答:解:在極坐標方程兩邊同乘以ρ,得ρ2=ρcosθ-ρsinθ?x2+y2=x-y?(x-
1
2
)
2
+(y+
1
2
)
2
=
1
2

所以圓的半徑為
1
2
,該圓的面積為
π
2
點評:轉(zhuǎn)化思想是一種基本的數(shù)學思想方法,有關極坐標問題的求解,常常借助于極坐標方程與普通方程的互化求解
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓的極坐標方程為ρ=5
3
cosθ-5sinθ
,求它的半徑和圓心的極坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)A.如圖,四邊形ABCD內(nèi)接于⊙O,弧AB=弧AD,過A點的切線交CB的延長線于E點.
求證:AB2=BE•CD.
B.已知矩陣M
2-3
1-1
所對應的線性變換把點A(x,y)變成點A′(13,5),試求M的逆矩陣及點A的坐標.
C.已知圓的極坐標方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(1)將圓的極坐標方程化為直角坐標方程;
(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.
D.解不等式|2x-1|<|x|+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選做題(請考生在下列兩題中任選一題作答,若兩題都做,則按所做的第一題評閱計分)
(1)已知圓的極坐標方程為ρ=2cosθ,則該圓的圓心到直線ρsinθ+2ρcosθ=1的距離是
5
5
5
5

(2)若關于x的不等式|a-1|+2≥|x+1|+|x-3|存在實數(shù)解,則實數(shù)a的取值范圍是
(-∞,-1]∪[3,+∞)
(-∞,-1]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【坐標系與參數(shù)方程選做題】已知圓的極坐標方程為ρ=2cos(θ+
π4
),則該圓的半徑是
1
1

查看答案和解析>>

同步練習冊答案