已知函數(shù)f(x)=log3(3x-9)
(Ⅰ)求f(x)的定義域;
(Ⅱ)x為何值時(shí),函數(shù)f(x)的值小于1.
考點(diǎn):對數(shù)函數(shù)的值域與最值,對數(shù)函數(shù)的定義域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(Ⅰ)使函數(shù)f(x)有意義則需3x-9>0,解這個不等式即可求出函數(shù)f(x)的值域.
(Ⅱ)讓f(x)<1,帶入解析式解不等式即可求出x的取值.
解答: 解:(Ⅰ)要使f(x)有意義,則:
3x-9>0,解得x>2;
∴函數(shù)f(x)的定義域?yàn)椋?,+∞).
(Ⅱ)由log3(3x-9)<1得:0<3x-9<3,解得2<x<log312;
∴x∈(2,log312)時(shí),f(x)<1.
點(diǎn)評:考查對數(shù)函數(shù)的定義域,指數(shù)函數(shù)的單調(diào)性,對數(shù)函數(shù)的單調(diào)性,以及通過函數(shù)單調(diào)性解不等式的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為1的正方體ABCD-A1B1C1D1中,M和N分別為A1B1和BB1的中點(diǎn),那么直線AM與CN所成角的余弦值是(  )
A、-
2
5
B、
2
5
C、
3
5
D、
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-
3
2
x2的最大值不大于
1
6
,又當(dāng)x∈[
1
4
1
2
]時(shí),f(x)≥
1
8
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域是(0,+∞),且f(x•y)=f(x)+f(y).
(1)求f(1);
(2)求證:f(x2)-2f(x)=0
(3)已知f(x)在(0,+∞)上是增函數(shù),解不等式f[x(x-
1
2
)]<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊上有一點(diǎn)P(3tanθ,-4tanθ),其中θ∈(-
π
2
,0)
(1)判斷角α是第幾象限角;
(2)求角α的正弦、余弦及正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
x
+lnx(a∈R).
(Ⅰ)討論函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=1時(shí),求函數(shù)f(x)+2x的極值;
(Ⅲ)若f(x)<x2在x∈(1,+∞)時(shí)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在正方體ABCD-A1B1C1D1中:
(1)求證:平面AB1C∥平面A1C1D
(2)求二面角B1-AC-B的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知任意角α的終邊經(jīng)過點(diǎn)P(-3,m),且cosα=-
3
5

(1)求m的值.
(2)求sinα與tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy上的區(qū)域D由不等式組
x-y-2≤0
x+2y-4≥0
2y-3≤0
給定.若M(x,y)為D上的動點(diǎn),點(diǎn)N的坐標(biāo)為(1,3),則z=
OM
ON
的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案