精英家教網 > 高中數學 > 題目詳情
已知函數
(1)求的單調區(qū)間;
(2)若關于的方程有3個不同實根,求實數的取值范圍;
(3)已知當恒成立,求實數的取值范圍.
(1)遞增區(qū)間是,遞減區(qū)間是
(2)(3)

試題分析:(1)由題意可知,令    2分
所以當,當時,.
所以的單調遞增區(qū)間是,遞減區(qū)間是.      4分
(2)由(1)分析可知當,有極大值
,有極小值.      6分
所以當時,直線的圖象有3個不同的交點,
即方程有三個解。        8分
(3)
因為,所以上恒成立。       11分
,由二次函數的性質,上是增函數,
所以.        13分
所以的取值范圍是.     14分
點評:解決此類問題一定要注意數形結合思想的應用,另外恒成立問題一般轉為為最值問題解決.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

函數,使是增函數的的區(qū)間是________

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)討論單調區(qū)間;
(2)當時,證明:當時,證明:。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數的單調增區(qū)間是    

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若二次函數滿足,且,則實數的取值范圍是_________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

定義在上奇函數與偶函數,對任意滿足+a為實數
(1)求奇函數和偶函數的表達式
(2)若a>2, 求函數在區(qū)間上的最值

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)求函數的單調區(qū)間
(2)函數的圖象在處切線的斜率為若函數在區(qū)間(1,3)上不是單調函數,求m的取值范圍

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
⑴寫出該函數的單調區(qū)間;
⑵若函數恰有3個不同零點,求實數的取值范圍;
⑶若對所有的恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

分別是定義在R上的奇函數和偶函數,當時,,且,則的解集是( )  
A.(-3,0)∪(3,+∞) B.(-3,0)∪(0,3)
C.(-∞,-3)∪(3,+∞)D. (-∞,-3)∪(0,3)

查看答案和解析>>

同步練習冊答案