分析:(1)把a(bǔ)=1代入f(x)=x|x-a|+1,解方程f(x)=x即可求得結(jié)果;
(2)去絕對(duì)值符號(hào),
f(x)=,對(duì)a分情況討論,0<a≤1時(shí),函數(shù)y=f(x)在區(qū)間[1,2]上遞增,求出函數(shù)的最小值;當(dāng)1<a≤2時(shí),f(x)
min=f(a)=1;
當(dāng)2<a<3時(shí),x≤2<a,數(shù)f(x)
min=f(2)=2a-3;
(3)a>0時(shí),求出函數(shù)在各段上的函數(shù)的最值和單調(diào)性,即可對(duì)a進(jìn)行分類(lèi)討論,即可求得結(jié)果.
解答:解:(1)當(dāng)a=1時(shí),有x|x-1|+1=x
所以x=-1或x=1;
(2)
f(x)=,
1°.當(dāng)0<a≤1時(shí),x≥1≥a,這時(shí),f(x)=x
2-ax+1,對(duì)稱(chēng)軸
x=≤<1,
所以函數(shù)y=f(x)在區(qū)間[1,2]上遞增,f(x)
min=f(1)=2-a;
2°.當(dāng)1<a≤2時(shí),x=a時(shí)函數(shù)f(x)
min=f(a)=1;
3°.當(dāng)2<a<3時(shí),x≤2<a,這時(shí),f(x)=-x
2+ax+1,對(duì)稱(chēng)軸
x=∈(1,),
f(1)=a,f(2)=2a-3,∵(2a-3)-a=a-3<0
所以函數(shù)f(x)
min=f(2)=2a-3;
(3)因?yàn)閍>0,所以
a>,
所以y
1=x
2-ax+1在[a,+∞)上遞增;y
2=-x
2+ax+1在
(-∞,)遞增,在
[,a)上遞減.
因?yàn)閒(a)=1,所以當(dāng)a=1時(shí),函數(shù)y=f(x)的圖象與直線(xiàn)y=a有2個(gè)交點(diǎn);
又
f()=+1≥2••1=a,當(dāng)且僅當(dāng)a=2時(shí),等號(hào)成立.
所以,當(dāng)0<a<1時(shí),函數(shù)y=f(x)的圖象與直線(xiàn)y=a有1個(gè)交點(diǎn);
當(dāng)a=1時(shí),函數(shù)y=f(x)的圖象與直線(xiàn)y=a有2個(gè)交點(diǎn);
當(dāng)1<a<2時(shí),函數(shù)y=f(x)的圖象與直線(xiàn)y=a有3個(gè)交點(diǎn);
當(dāng)a=2時(shí),函數(shù)y=f(x)的圖象與直線(xiàn)y=a有2個(gè)交點(diǎn);
當(dāng)a>2時(shí),函數(shù)y=f(x)的圖象與直線(xiàn)y=a有3個(gè)交點(diǎn).