已知關(guān)于x的方程x2+mx+m+n=0的兩根分別為橢圓和雙曲線的離心率.記分別以m,n為橫、縱坐標(biāo)的點(diǎn)A(m,n)表示的平面區(qū)域D.若函數(shù)y=loga(x+4)(a>1)的圖象上存在區(qū)域D內(nèi)的點(diǎn),則實(shí)數(shù)a的取值范圍為
 
考點(diǎn):雙曲線的簡單性質(zhì),橢圓的簡單性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)關(guān)于x的方程x2+mx+m+n=0的兩根分別為橢圓和雙曲線的離心率,可得方程x2+mx+m+n=0的兩根,一根屬于(0,1),另一根屬于(1,+∞),從而可確定平面區(qū)域?yàn)镈,進(jìn)而利用函數(shù)y=loga(x+4)(a>1)的圖象上存在區(qū)域D上的點(diǎn),可求實(shí)數(shù)a的取值范圍.
解答: 解:構(gòu)造函數(shù)f(x)=x2+mx+m+n
∵關(guān)于x的方程x2+mx+m+n=0的兩根分別為橢圓和雙曲線的離心率
∴方程x2+mx+m+n=0的兩根,一根屬于(0,1),另一根屬于(1,+∞)
∴f(0)>0,f(1)<0,∴
m+n>0
1+2m+n<0

∵直線m+n=0,1+2m+n=0的交點(diǎn)坐標(biāo)為(-1,1)
∴要使函數(shù)y=loga(x+4)(a>1)的圖象上存在區(qū)域D上的點(diǎn),則必須滿足1<loga(-1+4)
∴l(xiāng)oga3>1=logaa,
∵a>1
∴1<a<3
故答案為:(1,3).
點(diǎn)評:本題以方程根為載體,考查橢圓、雙曲線的幾何性質(zhì),考查數(shù)形結(jié)合的數(shù)學(xué)思想,確定平面區(qū)域是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x∈R|m2x2-n=0},當(dāng)m,n滿足什么條件時,集合A是有限集?無限集?空集?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)r(x)=x2+ax+b(a,b為常數(shù),a∈R,b∈R)的一個零點(diǎn)是-a,函數(shù)g(x)=lnx,e是自然對數(shù)的底數(shù).設(shè)函數(shù)f(x)=r(x)-g(x).
(Ⅰ)過坐標(biāo)原點(diǎn)O作曲線y=f(x)的切線,證明切點(diǎn)的橫坐標(biāo)為1;
(Ⅱ)令F(x)=
f(x)
ex
,若函數(shù)F(x)在區(qū)間(0,1]上是單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1-t,1-t,t),
b
=(2,t,t),則|
b
-
a
|的最小值是( 。
A、
5
5
B、
55
5
C、
3
5
5
D、
11
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=m2(lnx)2+(-3m+1)lnx在區(qū)間(e,e2)上是單調(diào)增函數(shù),則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)P是曲線y=x2-lnx任意一點(diǎn),則點(diǎn)P到直線y=x-2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(x+1)=-f(x),當(dāng)x∈[-1,1]時,f(x)=x2,函數(shù)g(x)=
loga(x-1)x>1
2xx≤1
,若函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]上恰有8個零點(diǎn),則a的取值范圍為
( 。
A、(2,4)
B、(2,5)
C、(1,5)
D、(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面是平行四邊形,PA⊥平面ABCD,AC⊥AB,點(diǎn)E是PD的中點(diǎn).
(I)求證:PB⊥AC;
(Ⅱ)求證:PB∥平面ACE;
(Ⅲ)求三棱錐E-ABC與四棱錐P-ABCD的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD的底面為等腰梯形,AB∥CD,AC⊥BD垂足為H,PH是四棱錐的高,E為AD的中點(diǎn).
(1)證明:PE⊥BC;
(2)若∠APB=∠ADB=60°,求直線PA與PEH平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案