設O是原點,向量,對應的復數(shù)分別為-2-3i,3+2i,那么向量對應的復數(shù)是( )
A.-5+5i
B.-5-5i
C.5+5i
D.5-5i
【答案】分析:直接求出向量,利用復數(shù)的加減法運算即可得到所求復數(shù).
解答:解:O是原點,向量,對應的復數(shù)分別為2-3i,3+2i,
==3+2i+2+3i=5+5i;
故選C.
點評:本題考查復數(shù)的對應關(guān)系,復數(shù)與復平面內(nèi)的點向量是一一對應的,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知對任意平面向量
AB
=(x,y)
,將
AB
繞其起點沿順時針方向旋轉(zhuǎn)θ角得到向量
AP
=(xcosθ+ysinθ,-xsinθ+ycosθ)
,叫做將點B繞點A沿順時針方向旋轉(zhuǎn)θ角得到點P.
(1)已知平面內(nèi)點A(1,2),點B(1+
2
,2-2
2
)
,將點B繞點A沿順時針方向旋轉(zhuǎn)
π
4
得到點P,求點P的坐標;
(2)設平面內(nèi)曲線3x2+3y2+2xy=4上的每一點繞坐標原點O沿順時針方向旋轉(zhuǎn)
π
4
得到的點的軌跡是曲線C,求曲線C的方程;
(3)過(2)中曲線C的焦點的直線l與曲線C交于不同的兩點A、B,當
OA
OB
=0
時,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知對任意平面向量
AB
=(x,y),我們把
AB
繞其起點A沿逆時針方向旋轉(zhuǎn)θ角得到向量
AP
=(xcosθ-ysinθ,xsinθ+ycosθ),稱為
AB
逆旋θ角到
AP

(1)把向量
a
=(2,-1)逆旋
π
3
角到
b
,試求向量
b

(2)設平面內(nèi)函數(shù)y=f (x)圖象上的每一點M,把
OM
逆旋
π
4
角到
ON
后(O為坐標原點),得到的N點的軌跡是曲線x2-y2=3,當函數(shù)F (x)=λ f (x)-|x-1|+2有三個不同的零點時,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知對任意平面向量數(shù)學公式=(x,y),我們把數(shù)學公式繞其起點A沿逆時針方向旋轉(zhuǎn)θ角得到向量數(shù)學公式=(xcosθ-ysinθ,xsinθ+ycosθ),稱為數(shù)學公式逆旋θ角到數(shù)學公式
(1)把向量數(shù)學公式=(2,-1)逆旋數(shù)學公式角到數(shù)學公式,試求向量數(shù)學公式
(2)設平面內(nèi)函數(shù)y=f (x)圖象上的每一點M,把數(shù)學公式逆旋數(shù)學公式角到數(shù)學公式后(O為坐標原點),得到的N點的軌跡是曲線x2-y2=3,當函數(shù)F (x)=λ f (x)-|x-1|+2有三個不同的零點時,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知對任意平面向量,把繞其起點沿逆時針方向旋轉(zhuǎn)q角得到向量,叫做把點B繞點A逆時針方向旋轉(zhuǎn)q角得到點P.

(1)已知平面內(nèi)點A(2,1),點B,).把點B繞點A沿逆時針方向旋轉(zhuǎn)后得到點P,求點P的坐標;

(2)設平面內(nèi)曲線C上的每一點繞坐標原點O沿順時針方向旋轉(zhuǎn)后得到的點的軌跡是曲線,求原來曲線C的方程.

查看答案和解析>>

同步練習冊答案