【題目】已知極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸正半軸且單位長(zhǎng)度相同的極坐標(biāo)系中曲線,(t為參數(shù)).
(1)求曲線上的點(diǎn)到曲線距離的最小值;
(2)若把上各點(diǎn)的橫坐標(biāo)都擴(kuò)大到原來(lái)的2倍,縱坐標(biāo)都擴(kuò)大到原來(lái)的倍,得到曲線,設(shè),曲線與交于A,B兩點(diǎn),求.
【答案】(1);(2)
【解析】
(1)根據(jù)題意,將的極坐標(biāo)方程轉(zhuǎn)化成直角坐標(biāo)方程,將的參數(shù)方程化成普通方程,利用幾何法,計(jì)算曲線上的點(diǎn)到曲線距離的最小值.
(2)根據(jù)伸縮變換,寫出曲線的直角坐標(biāo)方程,再根據(jù)直線的參數(shù)方程化成標(biāo)準(zhǔn)方程,利用參數(shù)t的幾何意義,計(jì)算即可求解.
(1),圓心為,半徑為1,
圓心到直線距離,
所以上的點(diǎn)到的最小距離為;
(2)伸縮變換為,所以,
把(t為參數(shù))化成標(biāo)準(zhǔn)方程為:
,
將和聯(lián)立,得,
因?yàn)?/span>,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形是邊長(zhǎng)為5的菱形,對(duì)角線(如圖1),現(xiàn)以為折痕將菱形折起,使點(diǎn)達(dá)到點(diǎn)的位置,棱,的中點(diǎn)分為,,且四面體的外接球球心落在四面體內(nèi)部(如圖2),則線段長(zhǎng)度的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平行四邊形中,,,為邊的中點(diǎn),將沿直線翻折成.若為線段的中點(diǎn).
(1)證明平面,并求的長(zhǎng);
(2)在翻折過(guò)程中,當(dāng)三棱錐的體積取最大時(shí),求平面與平面所成的二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:過(guò)點(diǎn),且離心率為.
(1)求橢圓的方程;
(2)若斜率為的直線與橢圓交于不同的兩點(diǎn),,且線段的垂直平分線過(guò)點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若曲線在點(diǎn)處的切線與曲線切于點(diǎn),求的值;
(Ⅲ)若恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P—ABCD中,底面ABCD是菱形,PC⊥BC,點(diǎn)E是PC的中點(diǎn),且平面PBC⊥平面ABCD.求證:
(1)求證:PA∥平面BDE;
(2)求證:平面PAC⊥平面BDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)在歐洲的某孔子學(xué)院為了讓更多的人了解中國(guó)傳統(tǒng)文化,在當(dāng)?shù)嘏e辦了一場(chǎng)由當(dāng)?shù)厝藚⒓拥闹袊?guó)傳統(tǒng)文化知識(shí)大賽,為了了解參加本次大賽參賽人員的成績(jī)情況,從參賽的人員中隨機(jī)抽取名人員的成績(jī)(滿分100分)作為樣本,將所得數(shù)據(jù)進(jìn)行分析整理后畫(huà)出頻率分布直方圖如圖所示,已知抽取的人員中成績(jī)?cè)?/span>[50,60)內(nèi)的頻數(shù)為3.
(1)求的值和估計(jì)參賽人員的平均成績(jī)(保留小數(shù)點(diǎn)后兩位有效數(shù)字);
(2)已知抽取的名參賽人員中,成績(jī)?cè)?/span>[80,90)和[90,100]女士人數(shù)都為2人,現(xiàn)從成績(jī)?cè)?/span>[80,90)和[90,100]的抽取的人員中各隨機(jī)抽取2人,記這4人中女士的人數(shù)為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)(其中,點(diǎn)P的軌跡記為曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)Q在曲線上.
(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)當(dāng),時(shí),求曲線與曲線的公共點(diǎn)的極坐標(biāo)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)慶70周年閱兵式上的女兵們是一道靚麗的風(fēng)景線,每一名女兵都是經(jīng)過(guò)層層篩選才最終入選受閱方隊(duì),篩選標(biāo)準(zhǔn)非常嚴(yán)格,例如要求女兵身高(單位:cm)在區(qū)間內(nèi).現(xiàn)從全體受閱女兵中隨機(jī)抽取200人,對(duì)她們的身高進(jìn)行統(tǒng)計(jì),將所得數(shù)據(jù)分為,,,,五組,得到如圖所示的頻率分布直方圖,其中第三組的頻數(shù)為75,最后三組的頻率之和為0.7.
(1)請(qǐng)根據(jù)頻率分布直方圖估計(jì)樣本的平均數(shù)和方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)根據(jù)樣本數(shù)據(jù),可認(rèn)為受閱女兵的身高X(cm)近似服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.
(i)求;
(ii)若從全體受閱女兵中隨機(jī)抽取10人,求這10人中至少有1人的身高在174.28cm以上的概率.
參考數(shù)據(jù):若,則,,,,,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com