如圖,四邊形PCBM是直角梯形,,.又,直線AM與直線PC所成的角為

(1)求證:
(2)求二面角的余弦值.

試題分析:方法1:(1)∵,∴平面ABC,∴.5分
(2)取BC的中點(diǎn)N,連MN.∵,∴,∴平面ABC.作
,交AC的延長(zhǎng)線于H,連結(jié)MH.由三垂線定理得,∴為二面角的平面角.∵直線AM與直線PC所成的角為,∴在中,
中,
中,
中,
中,∵,∴
故二面角的余弦值為.13分
方法2:(1)∵,∴平面ABC,∴.5分
(2)在平面ABC內(nèi),過(guò)C作BC的垂線,并建立空間直角坐標(biāo)系如圖所示.設(shè),則.   5分
,
,∴,得,∴. 8分
設(shè)平面MAC的一個(gè)法向量為,則由. 10分
平面ABC的一個(gè)法向量為 12分
顯然,二面角為銳二面角,∴二面角的余弦值為.13分
點(diǎn)評(píng):解決的關(guān)鍵是借助于空間向量法或幾何性質(zhì)法來(lái)得到證明和求解,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知在正方體,分別是的中點(diǎn),在棱上,且

(1)求證:; (2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

正方體中,M、N分別是棱CD1、CC1的中點(diǎn),則異面直線MA1DN所成角的余弦值是            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,棱柱ABCD—的底面為菱 形 ,AC∩BD=O側(cè)棱BD,點(diǎn)F的中點(diǎn).

(Ⅰ)證明:平面
(Ⅱ)證明:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,是以為直徑的半圓上異于、的點(diǎn),矩形所在的平面垂直于該半圓所在的平面,且

(Ⅰ)求證:
(Ⅱ)設(shè)平面與半圓弧的另一個(gè)交點(diǎn)為
①試證:;
②若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在棱長(zhǎng)為2的正方體中,設(shè)是棱的中點(diǎn).

⑴ 求證:;
⑵ 求證:平面
⑶ 求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,中,側(cè)棱與底面垂直,,,點(diǎn)分別為的中點(diǎn).

(1)證明:;
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,將邊長(zhǎng)為2的正方形ABCD沿對(duì)角線BD折疊,使的平面ABD⊥平面CBD,AE⊥平面ABD,且AE=,

(1) 求證:DE⊥AC
(2)求DE與平面BEC所成角的正弦值
(3)直線BE上是否存在一點(diǎn)M,使得CM//平面ADE,若存在,求M的位置,不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)為兩兩不重合的平面,為兩兩不重合的直線,給出下列四個(gè)命題:
①若,,則;
②若,,,則;
③若,,則;
④若,,,則其中真命
題的個(gè)數(shù)是 (  )))
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案