3.高三某班有女同學(xué)15名,男同學(xué)30名,老師按照分層抽樣的方法組建一個(gè)6人的課外興趣小組.
(1)求課外興趣小組中男、女同學(xué)各應(yīng)抽取的人數(shù);
(2)在一周的技能培訓(xùn)后從這6人中選出A、B兩名同學(xué)做某項(xiàng)實(shí)驗(yàn),實(shí)驗(yàn)結(jié)束后,A同學(xué)得到的實(shí)驗(yàn)數(shù)據(jù)為1.6、2、1.9、1.5、2,B同學(xué)得到的實(shí)驗(yàn)數(shù)據(jù)是2.1、18、1.9、2、2.2,請問哪位同學(xué)的實(shí)驗(yàn)更穩(wěn)定?并說明理由.
參考公式:${s^2}=\frac{1}{n}[{{{({{x_1}-\overline x})}^2}+{{({{x_2}-\overline x})}^2}+…+{{({{x_n}-\overline x})}^2}}]$.

分析 (1)按照分層抽樣的方法能求課外興趣小組中男、女同學(xué)各應(yīng)抽取的人數(shù).
(2)分別求出A、B同學(xué)得到的實(shí)驗(yàn)數(shù)據(jù)的平均數(shù),方差,由此能得到B同學(xué)的實(shí)驗(yàn)更穩(wěn)定.

解答 解:(1)∵高三某班有女同學(xué)15名,男同學(xué)30名,老師按照分層抽樣的方法組建一個(gè)6人的課外興趣小組,
∴男生抽。$\frac{30}{45}×6=4$(人),
女生抽取:$\frac{15}{45}×6=2$(人).
(2)設(shè)A、B同學(xué)得到的實(shí)驗(yàn)數(shù)據(jù)的平均數(shù)分別為$\overline{x_A}$,$\overline{x_B}$,方差分別為$S_A^2,S_B^2$,
$\overline{x_A}=\frac{1.6+2+1.9+2.5+2}{5}=2$,
$\overline{x_B}=\frac{2.1+1.8+1.9+2+2.2}{5}=2$,
∴S2A=$\frac{1}{5}$[(1.6-2)2+(2-2)2+(1.9-2)2+(2.5-2)2+(2-2)2]=0.084,
S2B=$\frac{1}{5}$[(2.1-2)2+(1.8-2)2+(1.9-2)2+(2-2)2+(2.2-2)2]=0.02,
$S_A^2=0.084,S_B^2=0.02$,
∵$S_A^2>S_B^2$,∴B同學(xué)的實(shí)驗(yàn)更穩(wěn)定.

點(diǎn)評(píng) 本題考查分層抽樣的應(yīng)用,考查平均數(shù)、方差的計(jì)算及應(yīng)用,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意方差公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.正方體ABCD-A1B1C1D1的棱長為1,E,F(xiàn)分別為BB1,CD的中點(diǎn),則點(diǎn)F到平面A1D1E的距離為$\frac{\sqrt{5}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)═cos2($\frac{2017π}{3}$+ωx)+$\sqrt{3}$sinωxcosωx,(ω>0).若x∈($\frac{π}{6}$,$\frac{π}{3}$)時(shí),f(x)有且只有一個(gè)最小值,沒有最大值,且f($\frac{π}{6}$)=f($\frac{π}{3}$),則f($\frac{π}{10}$)的值為( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.$\frac{2+\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某中學(xué)高一、高二、高三年級(jí)分別有60人、30人、45人選修了學(xué)校開設(shè)的某門校本課程,學(xué)校用分層抽樣的方法從三個(gè)年級(jí)選修校本課程的人中抽取了一個(gè)樣本,了解學(xué)生對校本課程的學(xué)習(xí)情況.已知樣本中高三年級(jí)有3人.
(Ⅰ)分別求出樣本中高一、高二年級(jí)的人數(shù);
(Ⅱ)用Ai(i=1,2…)表示樣本中高一年級(jí)學(xué)生,Bi(i=1,2…)表示樣本中高二年級(jí)學(xué)生,現(xiàn)從樣本中高一、高二年級(jí)的所有學(xué)生中隨機(jī)抽取2人.
(。┯靡陨蠈W(xué)生的表示方法,采用列舉法列舉出上訴所有可能的情況;
(ⅱ)求(ⅰ)中2人在同一年級(jí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.?dāng)?shù)列{an}中,${a_{n+1}}=\frac{a_n}{{1+3{a_n}}},{a_1}=2$,則 a20=$\frac{2}{115}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A,B,C所對的邊分別為a,b,c,$3sinAcosB+\frac{1}{2}bsin2A=3sinC$,且$A≠\frac{π}{2}$
(1)求a的值;       
(2)若$A=\frac{2π}{3}$,求△ABC周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線L經(jīng)過點(diǎn)P($\frac{1}{2}$,1),傾斜角$α=\frac{π}{6}$,在極坐標(biāo)系下,圓C的極坐標(biāo)方程為$ρ=\sqrt{2}cos({θ-\frac{π}{4}})$.
(1)寫出直線l的參數(shù)方程,并把圓C的方程化為直角坐標(biāo)方程;
(2)設(shè)l與圓C相交于A,B兩點(diǎn),求點(diǎn)P到A,B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知數(shù)列{an}滿足an=$\left\{\begin{array}{l}{(\frac{1}{3}-a)n+8,n>8}\\{{a}^{n-7},n≤8}\end{array}\right.$,若對于任意的n∈N*都有an>an+1,則實(shí)數(shù)a的取值范圍是( 。
A.(0,$\frac{1}{3}$)B.(0,$\frac{1}{2}$)C.[$\frac{1}{2}$,1)D.($\frac{1}{3}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.一個(gè)四面體的頂點(diǎn)都在球面上,它們的正視圖、側(cè)視圖、俯視圖都是如圖.圖中圓內(nèi)有一個(gè)以圓心為中心邊長為2的正方形.則這個(gè)四面體的外接球的表面積是( 。
A.B.C.12πD.14π

查看答案和解析>>

同步練習(xí)冊答案