在長方體ABCD-A1B1C1D1中,AA1=AD=1,底邊AB上有且只有一點(diǎn)M使得平面D1DM⊥平面D1MC,
(1)求異面直線C1C與D1M的距離;
(2)求二面角M-D1C-D的正弦值。
解:(1)過D作于H,
∵平面平面且平面平面
∴DH⊥平面,
,
又∵,
平面,

又∵滿足條件的M只有一個(gè),
∴以CD為直徑的圓必與AB相切,切點(diǎn)為M,M為AB的中點(diǎn),
,
∴CD=2,
∵M(jìn)C⊥平面,
,
又∵,
所以MC為異面直線C1C與D1M的公垂線段,
CM的長度為所求距離。
(2)取CD中點(diǎn)E,連結(jié)ME,則ME⊥平面,
過M作于F,連結(jié)EF,則,
∴∠MFE為二面角的平面角,
又∵M(jìn)E=1,,
中,。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在長方體ABCD-A'B'C'D'中,AB=
3
,AD=
3
,AA′=1,則AA′和BC′所成的角是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A′B′C′D′中,用截面截下一個(gè)棱錐C-A′DD′,求棱錐C-A′DD′的體積與剩余部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海) 如圖,在長方體ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.證明直線BC′平行于平面D′AC,并求直線BC′到平面D′AC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•青浦區(qū)二模)(理)在長方體ABCD-A'B'C'D'中,AB=2,AD=1,AA'=1.
求:
(1)頂點(diǎn)D'到平面B'AC的距離;
(2)二面角B-AC-B'的大。ńY(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知在長方體ABCD-A′B′C′D′中,點(diǎn)E為棱CC′上任意一點(diǎn),AB=BC=2,CC′=1.
(Ⅰ)求證:平面ACC′A′⊥平面BDE;
(Ⅱ)若點(diǎn)P為棱C′D′的中點(diǎn),點(diǎn)E為棱CC′的中點(diǎn),求二面角P-BD-E的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案