【題目】在△ABC中,AC=3,BC=4,AB=5,以AB所在直線為軸,三角形面旋轉(zhuǎn)一周形成一旋轉(zhuǎn)體,求此旋轉(zhuǎn)體的表面積和體積.
【答案】表面積為π,體積為π.
【解析】
由已知三角形ABC為直角三角形,斜邊AB為軸旋轉(zhuǎn)一周,所得旋轉(zhuǎn)體是AB邊的高CO為底面半徑的兩個圓錐組成的組合體,計算出底面半徑及兩個圓錐高的和,代入圓錐體積公式,即可求出旋轉(zhuǎn)體的體積;又由該幾何體的表面積是兩個圓錐的側(cè)面積之和,分別計算出兩個圓錐的母線長,代入圓錐側(cè)面積公式,即可得到答案.
過C點作CD⊥AB,垂足為D.△ABC以AB所在直線為軸旋轉(zhuǎn)一周,所得到的旋轉(zhuǎn)體是兩個底面重合的圓錐,如圖所示,
這兩個圓錐高的和為AB=5,
底面半徑DC==,
故S表=π·DC·(BC+AC)=π.
V=π·DC2·AD+π·DC2·BD=π·DC2(AD+BD)=π.
即所得旋轉(zhuǎn)體的表面積為π,體積為π.
科目:高中數(shù)學 來源: 題型:
【題目】已知,且,函數(shù),其中為自然對數(shù)的底數(shù):
(1)如果函數(shù)為偶函數(shù),求實數(shù)的值,并求此時函數(shù)的最小值;
(2)對滿足,且的任意實數(shù),證明函數(shù)的圖像經(jīng)過唯一的定點;
(3)如果關于的方程有且只有一個解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形, , ,平面底面, 為的中點, 是棱上的點, , , .
(Ⅰ)求證:平面平面;
(Ⅱ)若異面直線與所成角的余弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實數(shù),使得至少有一個,使成立,若存在,求出實數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】兩地相距150千米,某人開汽車以60千米/小時的速度從地到達地,在地停留1小時后再以50千米/小時的速度返回地.
(1)試把汽車離開地的距離(千米)表示為時間(小時)的函數(shù);
(2)根據(jù)(1)中的函數(shù)表達式,求出汽車距離A地100千米時的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義在上的奇函數(shù),且,當,且時,有成立.
(1)判斷在上的單調(diào)性,并給予證明;
(2)若對任意的以及任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
①設某大學的女生體重與身高具有線性相關關系,根據(jù)一組樣本數(shù)據(jù),用最小二乘法建立的線性回歸方程為 ,則若該大學某女生身高增加,則其體重約增加;
②關于的方程的兩根可分別作為橢圓和雙曲線的離心率;
③過定圓上一定點作圓的動弦,為原點,若,則動點的軌跡為橢圓;
④已知是橢圓的左焦點,設動點在橢圓上,若直線的斜率大于,則直線(為原點)的斜率的取值范圍是.
A. ①②③ B. ①③④ C. ①②④ D. ②③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中華民族是一個傳統(tǒng)文化豐富多彩的民族,各民族有許多優(yōu)良的傳統(tǒng)習俗,如過大年吃餃子,元宵節(jié)吃湯圓,端午節(jié)吃粽子,中秋節(jié)吃月餅等等,讓人們感受到濃濃的節(jié)目味道,某家庭過大年時包有大小和外觀完全相同的肉餡餃子、蛋餡餃子和素餡餃子,一家4口人圍坐在桌旁吃年夜飯,當晚該家庭吃餃子時每盤中混放8個餃子,其中肉餡餃子4個,蛋餡餃子和素餡餃子各2個,若在桌上上一盤餃子大家共同吃,記每個人第1次夾起的餃子中肉餡餃子的個數(shù)為,若每個人各上一盤餃子,記4個人中第1次夾起的是肉餡餃子的人數(shù)為,假設每個人都吃餃子,且每人每次都是隨機地從盤中夾起餃子.
(1)求隨機變量的分布列;
(2)若的數(shù)學期望分別記為、,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設,求在區(qū)間上的最大值;
(3)證明:對,不等式成立.(為自然對數(shù)的底數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com