已知函數(shù)
(1)當(dāng)時,求的極小值;
(2)若直線對任意的都不是曲線的切線,求的取值范圍;
(3)設(shè),求的最大值的解析式.

(1)-2(2)(3)

解析試題分析:(1)   1分
當(dāng)時,時,,
      2分
的極小值是                      3分
(2)法1:,直線,
依題意,切線斜率,即無解   4分
       6分
法2:,  4分
要使直線對任意的都不是曲線的切線,當(dāng)且僅當(dāng)時成立,    6分 
(3)因
故只要求在上的最大值.                              7分
①當(dāng)時,   
                              9分
②當(dāng)時,
(ⅰ)當(dāng)        
上單調(diào)遞增,此時    10分
(ⅱ)當(dāng)時, 在單調(diào)遞增;
1°當(dāng)時,

2°當(dāng)
(。┊(dāng)
(ⅱ)當(dāng) 13分
綜上                       14分
考點:導(dǎo)數(shù)的幾何意義及函數(shù)極值最值
點評:利用函數(shù)在某一點處的導(dǎo)數(shù)值等于過改點的切線斜率可確定第二問中導(dǎo)數(shù)值不可能為,求函數(shù)極值最值首先求得導(dǎo)數(shù),當(dāng)導(dǎo)數(shù)等于0時得到極值點,確定單調(diào)區(qū)間從而確定是極大值還是極小值,第三問求最值要分情況討論在區(qū)間上的單調(diào)性,對于分情況討論題是一個難點內(nèi)容

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求曲線在點處的切線方程;
(2)直線為曲線的切線,且經(jīng)過原點,求直線的方程及切點坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(I)若,判斷函數(shù)在定義域內(nèi)的單調(diào)性;
(II)若函數(shù)在內(nèi)存在極值,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的圖象經(jīng)過點M(1,4),曲線在點M處的切線恰好與直線垂直。
(1)求實數(shù)的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知在區(qū)間[0,1]上是增函數(shù),在區(qū)間上是減函數(shù),又.
(1) 求的解析式;
(2) 若在區(qū)間(m>0)上恒有x成立,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),,().
(1)求函數(shù)的極值;
(2)已知,函數(shù),判斷并證明的單調(diào)性;
(3)設(shè),試比較,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)若,求曲線處的切線方程;
(2)若恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(I)若,求函數(shù)的極小值,
(Ⅱ)若,設(shè),函數(shù).若存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線 y = x3 + x-2 在點 P0 處的切線  與直線4x-y-1=0平行,且點 P0 在第三象限,
(1)求P0的坐標(biāo);
(2)若直線  , 且 l 也過切點P0 ,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案