【題目】某房地產(chǎn)開發(fā)公司計(jì)劃在一樓區(qū)內(nèi)建造一個(gè)長(zhǎng)方形公園,公園由長(zhǎng)方形的休閑區(qū)(陰影部分)和環(huán)公園人行道組成.已知休閑區(qū)的面積為4000平方米,人行道的寬分別為4米和10米.

(1)若設(shè)休閑區(qū)的長(zhǎng)米,求公園所占面積關(guān)于的函數(shù)的解析式;

(2)要使公園所占面積最小,休閑區(qū)的長(zhǎng)和寬該如何設(shè)計(jì)?

【答案】(1);(2)要使公園所占面積最小,休閑區(qū)的長(zhǎng)為100米,寬為40米.

【解析】試題分析:本題為函數(shù)應(yīng)用問題,首先要要認(rèn)真細(xì)致的審題,逐字逐句的讀題,建立函數(shù)模型,把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題.注意函數(shù)的定義域,實(shí)際問題要注意實(shí)際要求,建立函數(shù)關(guān)系后,有時(shí)利用基本不等式求最值,但要注意等號(hào)成立的條件,有時(shí)利用二次函數(shù)求最值,有時(shí)還需要借助導(dǎo)數(shù)研究函數(shù)的單調(diào)性求最值.

試題解析:

,知

(2)

當(dāng)且僅當(dāng)時(shí)取等號(hào)

∴要使公園所占面積最小,休閑區(qū)的長(zhǎng)為100米,寬為40米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為 ,數(shù)列滿足點(diǎn)在直線上.

(1)求數(shù)列, 的通項(xiàng),

(2)令,求數(shù)列的前項(xiàng)和;

(3)若,求對(duì)所有的正整數(shù)都有成立的的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足, ,其中 , 為非零常數(shù).

(1)若 ,求證: 為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列是公差不等于零的等差數(shù)列.

①求實(shí)數(shù), 的值;

②數(shù)列的前項(xiàng)和構(gòu)成數(shù)列,從中取不同的四項(xiàng)按從小到大排列組成四項(xiàng)子數(shù)列.試問:是否存在首項(xiàng)為的四項(xiàng)子數(shù)列,使得該子數(shù)列中的所有項(xiàng)之和恰好為2017?若存在,求出所有滿足條件的四項(xiàng)子數(shù)列;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙“十一”結(jié)束之后,某網(wǎng)站針對(duì)購物情況進(jìn)行了調(diào)查,參與調(diào)查的人主要集中在[20,50]歲之間,若規(guī)定:購物600(含600元)以下者,稱為“理智購物”,購物超過600元者被網(wǎng)友形象的稱為“剁手黨”,得到如下統(tǒng)計(jì)表:

分組編號(hào)

年齡分組

球迷

所占比例

1

[20,25)

1000

0.5

2

[25,30)

1800

0.6

3

[30,35)

1200

0.5

4

[35,40)

a

0.4

5

[40,45)

300

0.2

6

[45,50]

200

0.1

若參與調(diào)查的“理智購物”總?cè)藬?shù)為7720人.
(1)求a的值;
(2)從年齡在[20,35)的“剁手黨”中按照年齡區(qū)間分層抽樣的方法抽取20人; ①從這20人中隨機(jī)抽取2人,求這2人恰好屬于同一年齡區(qū)間的概率;
②從這20人中隨機(jī)抽取2人,用ζ表示年齡在[20,25)之間的人數(shù),求ξ的分布列及期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的角所對(duì)的邊份別為,且

1求角的大;

2,求的周長(zhǎng)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x(lnx﹣ax).
(1)a= 時(shí),求f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若f(x)存在兩個(gè)不同的極值x1 , x2 , 求a的取值范圍;
(3)在(2)的條件下,求f(x)在(0,a]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是以線段BC為直徑的圓O上一點(diǎn),AD⊥BC于點(diǎn)D,過點(diǎn)B作圓O的切線,與CA的延長(zhǎng)線相交于點(diǎn)E,點(diǎn)G是AD的中點(diǎn),連接CG并延長(zhǎng)與BE相交于點(diǎn)F,延長(zhǎng)AF與CB的延長(zhǎng)線相交于點(diǎn)P.
(1)求證:BF=EF;
(2)求證:PA是圓O的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn, S3=a4+6,且a1, a4, a13成等比數(shù)列.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè),求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)教育部頒布的《關(guān)于推進(jìn)中小學(xué)生研學(xué)旅行的意見》,某校計(jì)劃開設(shè)八門研學(xué)旅行課程,并對(duì)全校學(xué)生的選擇意向進(jìn)行調(diào)查(調(diào)查要求全員參與,每個(gè)學(xué)生必須從八門課程中選出唯一一門課程).本次調(diào)查結(jié)果整理成條形圖如下.

上圖中,已知課程為人文類課程,課程為自然科學(xué)類課程.為進(jìn)一步研究學(xué)生選課意向,結(jié)合上面圖表,采取分層抽樣方法從全校抽取的學(xué)生作為研究樣本組(以下簡(jiǎn)稱“組M”).

(Ⅰ)在“組M”中,選擇人文類課程和自然科學(xué)類課程的人數(shù)各有多少?

(Ⅱ)為參加某地舉辦的自然科學(xué)營(yíng)活動(dòng),從“組M”所有選擇自然科學(xué)類課程的同學(xué)中隨機(jī)抽取4名同學(xué)前往,其中選擇課程F或課程H的同學(xué)參加本次活動(dòng),費(fèi)用為每人1500元,選擇課程G的同學(xué)參加,費(fèi)用為每人2000元.

(ⅰ)設(shè)隨機(jī)變量表示選出的4名同學(xué)中選擇課程的人數(shù),求隨機(jī)變量的分布列;

(ⅱ)設(shè)隨機(jī)變量表示選出的4名同學(xué)參加科學(xué)營(yíng)的費(fèi)用總和,求隨機(jī)變量的期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案