【題目】某企業(yè)開發(fā)一種新產(chǎn)品,現(xiàn)準(zhǔn)備投入適當(dāng)?shù)膹V告費(fèi)對產(chǎn)品進(jìn)行促銷,在一年內(nèi),預(yù)計年銷量(萬件)與廣告費(fèi)(萬元)之間的函數(shù)關(guān)系為,已知生產(chǎn)此產(chǎn)品的年固定投入為萬元,每生產(chǎn)萬件此產(chǎn)品仍需要投入萬元,若年銷售額為“年生產(chǎn)成本的”與“年廣告費(fèi)的”之和,而當(dāng)年產(chǎn)銷量相等:
(1)試將年利潤(萬元)表示為年廣告費(fèi)(萬元)的函數(shù);
(2)求當(dāng)年廣告費(fèi)投入多少萬元時,企業(yè)利潤最大?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點到短軸的端點的距離為,離心率為.
(1)求橢圓的方程;
(2)過點的直線交橢圓于兩點,過點作平行于軸的直線,交直線于點,求證:直線恒過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓過定點,并且內(nèi)切于定圓.
(1)求動圓圓心的軌跡方程;
(2)若上存在兩個點,,(1)中曲線上有兩個點,,并且,,三點共線,,,三點共線,,求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中a實數(shù),e是自然對數(shù)的底數(shù).
1當(dāng)時,求函數(shù)在點處的切線方程;
2求在區(qū)間上的最小值;
3若存在,,使方程成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系并取相同的單位長度,曲線的極坐標(biāo)方程為.
(1)把曲線的方程化為普通方程,的方程化為直角坐標(biāo)方程
(2)若曲線,相交于兩點,的中點為,過點作曲線的垂線交曲線于兩點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若集合具有以下性質(zhì):(1)且;(2)若,,則,且當(dāng)時,,則稱集合為“閉集”.
(1)試判斷集合是否為“閉集”,請說明理由;
(2)設(shè)集合是“閉集”,求證:若,,則;
(3)若集合是一個“閉集”,試判斷命題“若,,則”的真假,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時間的關(guān)系,對該校200名高三學(xué)生平均每天體育鍛煉時間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)
平均每天鍛煉的時間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均體育鍛煉時間在的學(xué)生評價為“鍛煉達(dá)標(biāo)”.
(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;
鍛煉不達(dá)標(biāo) | 鍛煉達(dá)標(biāo) | 合計 | |
男 | |||
女 | 20 | 110 | |
合計 |
并通過計算判斷,是否能在犯錯誤的概率不超過0.025的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?
(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出10人,進(jìn)行體育鍛煉體會交流,
(i)求這10人中,男生、女生各有多少人?
(ii)從參加體會交流的10人中,隨機(jī)選出2人作重點發(fā)言,記這2人中女生的人數(shù)為,求的分布列和數(shù)學(xué)期望.
參考公式:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1=3an+4,n∈N*.
(1)證明:數(shù)列{an+2}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)設(shè)bn=(a2n+2)log3(an+2),求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線恒過定點,圓經(jīng)過點和點,且圓心在直線上.
(1)求定點的坐標(biāo)與圓的方程;
(2)已知點為圓直徑的一個端點,若另一個端點為點,問:在軸上是否存在一點,使得為直角三角形,若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com