【題目】如圖,多面體中,,平面,四邊形是菱形.
(1)證明:平面平面;
(2)若,,設(shè),求三棱錐的體積.
【答案】(1)見解析(2).
【解析】分析:(1)根據(jù)題的條件中平面,得到,根據(jù)菱形的性質(zhì)得到,利用線面垂直的判定定理證得線面垂直,再應(yīng)用面面垂直的判定定理證得面面垂直; (2)利用題的條件,求得相應(yīng)的線段長,利用棱錐的體積公式求得結(jié)果.
詳解:(1)證明:∵平面,平面,
∴,
∵四邊形是菱形,
∴,
∵,
∴平面,
∵平面,
∴平面平面.
(2)解法一:過點作,
∵平面,
∴,
∵,
∴平面,
∴是三棱錐的高,
∵四邊形是菱形,,
,
∴,是等邊三角形,
∴,,
由得,,
∵,
∴ .
解法二:∵,平面,
∴平面,
∵四邊形是菱形,,
,
∴,是等邊三角形,
∴,,
∴,
,
,
設(shè)到平面的距離為,
由得,
即,
∵,
∴ .
科目:高中數(shù)學 來源: 題型:
【題目】某大型商場為了了解顧客的購物信息,隨機在商場收集了位顧客的購物總額(單位元),將數(shù)據(jù)按照 , 分成組,制成了如下圖所示的頻率分布直方圖:
該商場每日大約有名顧客,為了增加商場銷售總額,近期對一次性購物不低于元的顧客發(fā)放紀念品.
(1)求頻率分布直方圖中的值,并估計每日應(yīng)準備紀念品的數(shù)量;
(2)若每日按分層抽樣的方法從購物總額在三組對應(yīng)的顧客中抽取名顧客,這名顧客中再隨機抽取兩名超級顧客,每人獎勵一個超級禮包,求獲得超級禮包的兩人來自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學為調(diào)查來自南方和北方的同齡大學生的身高差異,從2016級的年齡在18~19歲之間的大學生中隨機抽取了來自南方和北方的大學生各10名,測量他們的身高,量出的身高如下(單位:cm):
南方:158,170,166,169,180,175,171,176,162,163.
北方:183,173,169,163,179,171,157,175,184,166.
(1)根據(jù)抽測結(jié)果,畫出莖葉圖,對來自南方和北方的大學生的身高作比較,寫出統(tǒng)計結(jié)論.
(2)設(shè)抽測的10名南方大學生的平均身高為cm,將10名南方大學生的身高依次輸入如圖所示的程序框圖進行運算,問輸出的s大小為多少?并說明s的統(tǒng)計學意義。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知公差不為零的等差數(shù)列{an}中, S2=16,且成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{|an|}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)(其中)的部分圖象如圖所示,把函數(shù)的圖像向右平移個單位長度,再向下平移個單位,得到函數(shù)的圖像。
(1)當時,若方程恰好有兩個不同的根,求的取值范圍及的值;
(2)令,若對任意都有恒成立,求的最大值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產(chǎn)的產(chǎn)品在出廠前都要做質(zhì)量檢測,每件一等品都能通過檢測,每件二等品通過檢測的概率為.現(xiàn)有件產(chǎn)品,其中件是一等品, 件是二等品.
(Ⅰ)隨機選取件產(chǎn)品,設(shè)至少有一件通過檢測為事件,求事件的概率;
(Ⅱ)隨機選取件產(chǎn)品,其中一等品的件數(shù)記為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“雙十一網(wǎng)購狂歡節(jié)”源于淘寶商城(天貓)2009年11月11 日舉辦的促銷活動,當時參與的商家數(shù)量和促銷力度均有限,但營業(yè)額遠超預(yù)想的效果,于是11月11日成為天貓舉辦大規(guī)模促銷活動的固定日期.如今,中國的“雙十一”已經(jīng)從一個節(jié)日變成了全民狂歡的“電商購物日”.某淘寶電商分析近8年“雙十一”期間的宣傳費用(單位:萬元)和利潤(單位:十萬元)之間的關(guān)系,得到下列數(shù)據(jù):
2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(1)請用相關(guān)系數(shù)說明與之間是否存在線性相關(guān)關(guān)系(當時,說明與之間具有線性相關(guān)關(guān)系);
(2)根據(jù)(1)的判斷結(jié)果,建立與之間的回歸方程,并預(yù)測當時,對應(yīng)的利潤為多少(精確到0.1).
附參考公式:回歸方程中中和最小二乘估計分別為
,相關(guān)系數(shù)
參考數(shù)據(jù):
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,直線過點,且,線段交圓的交點為點,是關(guān)于軸的對稱點.
(1)求直線的方程;
(2)已知是圓上不同的兩點,且,試證明直線的斜率為定值,并求出該定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com