(2012•浦東新區(qū)一模)已知向量
a
與向量
b
,|
a
|=2,|
b
|=3,
a
、
b
的夾角為60°,當1≤m≤2,0≤n≤2時,|m
a
+n
b
|的最大值為
10
10
分析:依題意,欲求|m
a
+n
b
|的最大值,需求|m
a
+n
b
|
2
的最大值,利用向量的數(shù)量積可求得|m
a
+n
b
|
2
的關(guān)系式,再結(jié)合1≤m≤2,0≤n≤2,即可求得答案.
解答:解:∵|
a
|=2,|
b
|=3,
a
b
的夾角為60°,
|m
a
+n
b
|
2
=m2
a
2
+2mn
a
b
+n2
b
2
=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,
∵1≤m≤2,0≤n≤2,
∴當m=2且n=2時,|m
a
+n
b
|
2
取到最大值,即|m
a
+n
b
|
2
max
=76,
∴|m
a
+n
b
|的最大值為2
19

故答案為:2
19
點評:本題考查數(shù)量積表示兩個向量的夾角,考查向量的模,考查分析與運算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•浦東新區(qū)一模)函數(shù)y=
log2(x-2) 
的定義域為
[3,+∞)
[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•浦東新區(qū)一模)若X是一個非空集合,M是一個以X的某些子集為元素的集合,且滿足:
①X∈M、∅∈M;
②對于X的任意子集A、B,當A∈M且B∈M時,有A∪B∈M;
③對于X的任意子集A、B,當A∈M且B∈M時,A∩B∈M;
則稱M是集合X的一個“M-集合類”.
例如:M={∅,,{c},{b,c},{a,b,c}}是集合X={a,b,c}的一個“M-集合類”.已知集合X={a,b,c},則所有含{b,c}的“M-集合類”的個數(shù)為
10
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•浦東新區(qū)二模)手機產(chǎn)業(yè)的發(fā)展催生了網(wǎng)絡(luò)新字“孖”.某學生準備在計算機上作出其對應的圖象,其中A(2,2),如圖所示.在作曲線段AB時,該學生想把函數(shù)y=x
1
2
,x∈[0,2]
的圖象作適當變換,得到該段函數(shù)的曲線.請寫出曲線段AB在x∈[2,3]上對應的函數(shù)解析式
y=
2
(x-2)
1
2
+2
y=
2
(x-2)
1
2
+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•浦東新區(qū)一模)設(shè)復數(shù)z滿足|z|=
10
,且(1+2i)z(i是虛數(shù)單位)在復平面上對應的點在直線y=x上,求z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•浦東新區(qū)二模)已知z=
1
1+i
,則
.
z
=
1
2
+
1
2
i
1
2
+
1
2
i

查看答案和解析>>

同步練習冊答案