【題目】為打贏脫貧攻堅戰(zhàn),解決脫貧問題,政府重點扶持扶貧工廠.當(dāng)?shù)貙δ撤鲐毠S進行設(shè)備改造,為分析設(shè)備改造前后的效果,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取100件產(chǎn)品作為樣本,檢測質(zhì)量指標(biāo)值.該產(chǎn)品為次品、合格品、優(yōu)等品所對應(yīng)的指標(biāo)值范圍分別為,,.設(shè)備改造前的樣本的頻率分布直方圖如圖所示,設(shè)備改造后的樣本的頻數(shù)分布表如下所示.

質(zhì)量指標(biāo)值

頻數(shù)

1

4

47

38

10

(Ⅰ)根據(jù)以上數(shù)據(jù),完成以下列聯(lián)表,并判斷是否有的把握認(rèn)為設(shè)備改造與產(chǎn)品為次品有關(guān)?

次品

非次品

合計

改造前

改造后

合計

(Ⅱ)若工人的月工資是由基本工資1000元與效益工資兩部分組成.效益工資實施細(xì)則如下:每生產(chǎn)一件產(chǎn)品是合格品的獎50元,是優(yōu)等品的獎100元,是次品的扣20元.將頻率視為概率,估計設(shè)備改造后,一個月生產(chǎn)60件產(chǎn)品的工人月工資為多少元?

附:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】(Ⅰ)有把握(Ⅱ)4090

【解析】

(I)根據(jù)題意,完善表格,結(jié)合卡方計算公式,即可。(II)分別計算出三種品格的產(chǎn)品對應(yīng)的工資,相加,即可。

解:(Ⅰ)根據(jù)圖表得到列聯(lián)表:

次品

非次品

合計

設(shè)備改造前

15

85

100

設(shè)備改造后

5

95

100

合計

20

180

200

列聯(lián)表中的數(shù)據(jù)代入公式計算得:

.

∴有的把握認(rèn)為設(shè)備改造與產(chǎn)品為次品有關(guān).

(Ⅱ)優(yōu)等品效益工資:(元),

合格品效益工資:(元),

次品效益工資:(元),

工人的月工資約為(元),

設(shè)備改造后,一個月生產(chǎn)60件產(chǎn)品的工人月工資大約為4090元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),那么下列結(jié)論中錯誤的是( )

A. 的極小值點,則在區(qū)間上單調(diào)遞減

B. ,使

C. 函數(shù)的圖像可以是中心對稱圖形

D. 的極值點,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為,且經(jīng)過點.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)斜率為的直線與橢圓交于不同的兩點、,若橢圓上存在點,使得四邊形為平行四邊形(其中是坐標(biāo)原點),求平行四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,, ,是斜邊的中點,將沿直線翻折,若在翻折過程中存在某個位置,使得,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的內(nèi)角,所對的邊分別為,,,已知.

(Ⅰ)求;

(Ⅱ)若,且的面積為,求的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】獨立性檢驗中,假設(shè):運動員受傷與不做熱身運動沒有關(guān)系.在上述假設(shè)成立的情況下,計算得的觀測值.下列結(jié)論正確的是( )

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

A. 在犯錯誤的概率不超過0.01的前提下,認(rèn)為運動員受傷與不做熱身運動有關(guān)

B. 在犯錯誤的概率不超過0.01的前提下,認(rèn)為運動員受傷與不做熱身運動無關(guān)

C. 在犯錯誤的概率不超過0.005的前提下,認(rèn)為運動員受傷與不做熱身運動有關(guān)

D. 在犯錯誤的概率不超過0.005的前提下,認(rèn)為運動員受傷與不做熱身運動無關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】流行性感冒(簡稱流感)是流感病毒引起的急性呼吸道感染,是一種傳染性強、傳播速度快的疾。渲饕ㄟ^空氣中的飛沫、人與人之間的接觸或與被污染物品的接觸傳播.流感每年在世界各地均有傳播,在我國北方通常呈冬春季流行,南方有冬春季和夏季兩個流行高峰.兒童相對免疫力低,在幼兒園、學(xué)校等人員密集的地方更容易被傳染.某幼兒園將去年春期該園患流感小朋友按照年齡與人數(shù)統(tǒng)計,得到如下數(shù)據(jù):

年齡(

患病人數(shù)(

1)求關(guān)于的線性回歸方程;

2)計算變量的相關(guān)系數(shù)(計算結(jié)果精確到),并回答是否可以認(rèn)為該幼兒園去年春期患流感人數(shù)與年齡負(fù)相關(guān)很強?(若,則、相關(guān)性很強;若,則、相關(guān)性一般;若,則、相關(guān)性較弱.)

參考數(shù)據(jù):

參考公式:

相關(guān)系數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A,B,C,D為平面內(nèi)的四點,且A(1,3),B(2,–2),C(4,1).

(1)若,求D點的坐標(biāo);

(2)設(shè)向量,,若k+3平行,求實數(shù) 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若不等式的解集為,求實數(shù)的值;

(2)在(1)的條件下,若存在實數(shù)使成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案