平面向量
,
的夾角為60°,
=(2,0),|
|=1,則|
+2
|=( 。
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:根據(jù)已知條件可求出
||,
•,又
||=1,從而能求出
|+2|=
.
解答:
解:由
=(2,0)得
||=2;
所以根據(jù)已知條件可得:
|+2|==
=2.
故選A.
點評:考查根據(jù)向量坐標(biāo)求向量長度,數(shù)量積的計算公式,以及求向量長度的方法:
||=.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
現(xiàn)有命題“矩形的兩條對角線長度相等”,寫出它的逆命題與逆否命題,并說明其真或假的理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
若函數(shù)滿足f(1-x)=f(1+x)且f(0)=3,則f(2)的值為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(1)已知拋物線過點A(1,2),求拋物線的標(biāo)準(zhǔn)方程;
(2)已知雙曲線的一個焦點與拋物線y2=8x的焦點重合,且雙曲線的離心率等于2,求雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在△ABC中,|
|=|
|=3,∠ABC=60°,AD是邊BC上的高,則
•的值等于( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如圖,正方形O′A′B′C′的邊長為1cm,它是水平放置的一個平面圖形的直觀圖,則原圖的周長是( 。
A、8 cm |
B、6 cm |
C、2(1+) cm |
D、2(1+2) cm |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)有復(fù)數(shù)ω
1=-
+i,ω2=cosπ+isinπ,令ω=ω
1ω
2,則復(fù)數(shù)ω+ω
2+ω
3+…ω
2011=( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知a>0且a≠1,函數(shù)y=
loga(2x-3)+的圖象恒過定點P,若點P在指數(shù)函數(shù)f(x)的圖象上,則f(8)=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)橢圓
+
=1(a>b>0)的離心率為
,且它的一個焦點坐標(biāo)是(1,0),則此橢圓的方程為( 。
查看答案和解析>>