函數(shù)y=
2x-1
-x
的值域是______.
由于函數(shù)y=
2x-1
-x
的定義域?yàn)閇
1
2
,+∞),令t=
2x-1
≥0,可得 x=
t2+1
2
,
∴函數(shù)y=
2x-1
-x
=t-
t2+1
2
,即 y=-
1
2
t2+t-
1
2
,此二次函數(shù)的對(duì)稱軸為x=1,開(kāi)口向下.
故當(dāng)t=1時(shí),函數(shù)有最大值為 1,當(dāng) t趨于+∞時(shí),y趨于-∞.
故函數(shù)y=
2x-1
-x
的值域是(-∞,1],
故答案為 (-∞,1].
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
2x-1
-x
的值域是
(-∞,1]
(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=2x+1+
x-1
的值域?yàn)?!--BA-->
[3,+∞)
[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知問(wèn)題“設(shè)正數(shù)x,y滿足
1
x
+
2
y
=1
,求x+y的最值”有如下解法;
設(shè)
1
x
=cos2α,
2
y
=sin2α,α∈(0,
π
2
)

則x=sec2α=1+tan2α,y=2csc2α=2(1+cot2α),
所以,x+y=3+tan2α+2cot2α=3+tan2+
2
tan2α
≥3+2
2
,等號(hào)成立當(dāng)且僅當(dāng)tan2α=
2
tan2α
,即tan2α=
2
,此時(shí)x=1+
2
,y=2+
2

(1)參考上述解法,求函數(shù)y=
1-x
+2
x
的最大值.
(2)求函數(shù)y=2
x+1
-
x
(x≥0)
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•莆田模擬)如圖,邊長(zhǎng)為3(百米)的正方形ABCD是一個(gè)觀光區(qū)的平面示意圖,中間葉形陰影部分MN是一片人工湖,它的左下方邊緣曲線段MN為函數(shù)y=
2x
(1≤x≤2)
的圖象.為了便于游客觀光,擬在觀光區(qū)內(nèi)鋪設(shè)一條穿越該區(qū)域的直路l(寬度不計(jì)),其與人工湖左下方曲線段MN相切(切點(diǎn)記為P),并把該區(qū)域分為兩部分.現(xiàn)直路l左下部分區(qū)域規(guī)劃為花圃,記點(diǎn)P到邊AD距離為t,f(t)表示花圃的面積.
(1)求直路l所在的直線與兩坐標(biāo)軸的交點(diǎn)坐標(biāo);
(2)求面積f(t)的解析式;
(3)請(qǐng)你制定一個(gè)鋪設(shè)方案,使得花圃面積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
2x+1(x<0)
1(x=0)
x2+1(x>0)
編寫(xiě)程序,輸入自變量x的值,輸出其相應(yīng)的函數(shù)值,并畫(huà)出程序框圖.

查看答案和解析>>

同步練習(xí)冊(cè)答案